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Title of Dissertation: Analysis of Low-Energy Electron Diffraction 1-Z Spectra
Using Artificial Neural Networks

David Grant Simpson, Doctor of philosophy, 1999

Dissertation directed by: Dr. philip Rous, Associate professor of physics

Low-energy electron diffraction (LEED) has proven to be a very successfirl rnethod fbr

determining the structure of surfaces. Howeveq the calculations involve the use of a

global search algorithm, which can requirc sr-rbstantial amounts of computer time. This

Dissertation investigates the use of artificial neural networks as a method for increasing

the efficiency of this search. Using the Ni5,sPd50(100) surfhce as an example, it is shown

that once a neural network is trained on I-V curves producecl by a LEED fLrll dynam-

ical calculation, it can successfully recognize the surfhce strLlcture parameters from an

experimental I -V cLlrve.
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Preface

A
f\S we approach the dawn of the twenty-first century it is natural to pause and reflect

on the scientific advancements that have transformed the world during the past hundred

years, and to wonder about what the coming century will bring. One hundred years ago,

many physicists assumed that our understanding of Nature was essentially complete, anrJ

that twentieti'r-century pirysics would consist lalgely of perfbrining exocrimcnts which

would yiekl measurenrentr rvith increasing degrees o1'precision.

This view did not hold lbr long. Einstoin's publication of the theulies of special rel-

ativity in 1905 and general relativity in l9l6 were followed shortly by the development

of the quantum theory in the 1920s. These theories have revolntionized our understand-

ing of Nature, and have given birth to whole new branches of physics which are still

being explored today. Our understanding of these new fields has resulted in astonishing

technological advancements which have changed the lives of people everywhere. These

technological advancements have, in turn, made possible the experimental and compu-

tational techniques that have allowed us to advance our understanding of Nature even

further.

The development of the quantlrm theory has made possible our modern understanding

of the theorv of solids. A sLrb-field of solid-state physics, surfuc'e ph,r".sics, is concerned



with the ways in which the atomic composition ancl strLlcture of a solid is changed in the

vicinity of a surface (that is, at its interface with a surrounding vacLlun.) or gas). This study

is important fbr a thorough understanding of many processes of great practical importance.

such as corrosion, semiconductor physics, and czrtalysis.

Experimental surface physics is based upon techniques that are sensitive to the struc-

ture and composition of the atoms of the solid near the surface, while being relatively

insensitive to the atoms in the bLrlk of the material. The atoms of interest are those in

the top few (usually around three) atomic layers near the vacuum interface, since it is

generally found that those are the layers whose structure differs appreciably from that of

the bulk solid.

Since the earliest days of surface physics, one of thc nx-rst fundarncntal and useful of

tltese experimental tecltnirlues has bcen lttvt'encrg), r:lcr:tron tlit'jroctiott, or LEED. LEED

is an e.rperimcirtal technique used for surl)cc crystallograpl'iy in rvhich one illurninates a

solid surface with low-energy electrons and observes the resulting diffraction pattern. The

resulting data allows one to determine the atornic positions of the surface layers, typically

to within about 0.1 angstrom.

Only in the past few decades have advances in vacuum technology made it possible to

keep surfaces clean for enough time to allow LEED techniques to investigate their surface

properties. Technological advancements over these same decades have seen the develop-

ment of digital computers of increasing speed and power, which have made possible the

theoretical calculations with which to properly interpret LEED experimental data for an

accurate understanding of the structure and composition of crystalline surfaces.

This Dissertation is a description of a new development in this fleld: the application of

artificial neural netr.vorks to the interpretation of LEED experimental data. We begin with

i i i



a overview of the physics of surfaces and LEED experimental techniques in Chapter L

Chapter 2 gives a brief description of the theoretical calculations used to predict the

outcome of a LEED experiment. These calculations are used to create a database that

is used by the computational technique described in Chapter 3, that of artificial neural

networks. Chapter 4 gives a description of the research with which these techniques were

developed, and Chapters 5 and 6 describe the results of the research and the applicability

of the artificial neural network techniques to the analysis of experimental LEED data.

I V
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Chapter I

Surface Physics and Low-Energy
Electron Diffraction

"Ntrtu.ra ine.st in mentibus nos'tri,s insutiubili,s quneLlLtnt cupitlitas ve ri vidcntJi."

-- Cicero, Tusculanae Dislttrtatiortt's, [, i i, 41

O*U of the newest branches of solid-state physics is surfnce physic.s, the study of

the physical processes that occur at the surface of a solid-that is to say, in the few atomic

layers near its interface with a surrounding gas or vacuum. The study of the physics at solid

surfaces is of great importance for understanding many processes of practical interest. For

example, corrosion and catalysis involve chemical processes that take place on a material

surface, as does much of the interesting physics that takes place in semiconductor devices

(for example. at the junction between p-type and n-type semiconductors, or between a

metal oxide and a semiconductor in MOSFETs zrnd similar devices [1]).

A greater understanding of the physics and chemistry that takes place at sllrfaces may

yield many practical benefits. For example, it may result in ways to prevent unwanted



corrosion or the development of new materials and devices with many interestins and

useful properties.

Surtace physics is an emerging discipline that is still very much in its infancy. Only in

recent years has experimental and compr-rtational technology advanced to a point that has

allowed physicists to investigate in detail the ways in which atoms arrange themselves in

the vicinity of a material surface and the chemical processes that take place on a surface.

At the moment, most studies are confined to investigations of fairly simple surfaces-

usually crystalline meteils or semiconductors whose surfaces have been thoroughly cleaned.

Typically these surfaces are studied in an ultra-high vacuum (UHV) environment to pre-

vent complicating contaminations from distorting the data. Only in coming years, after

we have gained a thorough under.standing of the physic.s of clean crystalline surfaces,

will we be able to begin investig.ating more complicated systems, such as highly con-

taminated surt-aces at atmospheric pres:sure or the physics at the surfaces of amrtrphous

solids. Such advances will undoLrbtedly depend on further developments in experimental

and computational technology.

ln this Dissertation I will review the experimental, theoretical, and computational

background behind one ol the most important experimental techniques of the surface

physicist: low-energv electron diffraction, or LEED. This will be followed by a description

of my recent research in the use of computer artificial intelligence in helping to solve a

difficult compr-rtational problem in LEED: that of extracting information about the surface

structure and composition trom LEED diffraction patterns.



1.1 Physics of Surfaces

When a solid material is cut, the atoms in the vicinity of the newly-fbrmed surface will

generally rearrange themselves into a pattern that diff-ers from that of the bulk material.

This is because atoms near the surface of a material lack coordination compared to atoms

deep in the bulk, causing the surface atoms rearrange themselves into a minimum-energy

configuration that differs from that of the bulk.

Experimental studies have shown that, in metals, the presence of a surface interface

generally results in a relrtxrttion of the surface, in which the spacings between atomic

layers parallel to the surface are changed relative to the bulk, while the crystal structure

remains essential ly unchanged t l ,2l.The region over which this relaxation takes place,

called the selvedge, generally extends to just a f-ew atomic layers into the bulk of the

crystal (Fig. l .  I  ).

Relaxation of the top layer of surface atoms tends towards the bulk so that the inter-

atomic layer spacing at the selvedge is contracted relative to the bulk. The change in the

layer spacings deeper in the crystal is often oscillatory; this may be understood by ref'erring

to Fig. 1.2. The figure shows Wigner-Seitz cells drawn around each of the core atoms in

the surface, where each cell represents a portion of the mobile conduction electrons sur-

rounding that atom. At the surfhce, the conduction electrons will redistribute themselves

into the smooth, lower-energy configuration shown. This net shifting of electrons toward

the interior of the material will also shift the ion cores' electrostatic equilibrium position

in the same direction, resulting in a net shift of the ion cores into the bulk and a general

contraction of the atomic layers near the surface.

The experimental stLrdy of the behavior of the atoms near the solid surface is hampered



Figure l.l: SLrrface relaxation and reconstruction.
(a) Atomic arrangement of bulk solid. (b) Relaxation of surface atoms. (c) Reconstruction
of surface atoms. (From Prutton, 1994 [].)
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1.2: Surface relaxation.
(From Finnis and Heine.

Figure
ret4 l3l.)

(? )



6

by the presence of contaminating iltoms which are easily adsorbed onto the surface. In

order to simplify the study of the surf'ace atoms, it is necessary to observe the surface

in an ultra-high vacuum, where the density of contaminating atoms is sufficiently low

to allow the pure surface to be studied at length without significant interf-erence from

contaminants. Only in recent years have advances in vacuum technology made it possible

to create vacuums of sufficiently low pressure (- 10 l0 torr) to allow crystalline surfaces

to be studied befbrc they become excessively contaminated by atoms fi'om the surrounding

gases.

1.2 Low-Energy Electron Diffraction

Many experimental methods have been dcvised for studying the atoms at a crystalline

surface. Each method is required to be surfhcc sensitive in some way, so that it returns

information about the surface atoms while ignoring the atoms in the bulk material. One

may, for example, bombard a surf'ace with high-energy electrons or x rays at grazing

incidence so that they never enter the bulk, as is done in reflection high-energy electron

diffraction (RHEED) and grazing-incidencc x-ray diffiaction.

One of the most important surf'ace-sensitive experimental methods of the surface physi-

cist is low-enerS4y el,ectntn dit't''ructirm, or LEED. LEED has its origins in the famous 1927

experiment of Davisson and Germer [4], in which a crystal of nickel was bombarded by

a beam of low-energy (54 eV) electrons. Measurement of the scattering angle of the scat-

tered electrons allowed Davisson and Germer to make the first experimental measurement

of the electron wavelength-a vivid experimental confirmation of the wavelike nature of

the electron, for which Davisson and Thomson were awarded the l93l Nobel prrze rn



physics.

The surface sensitivity of low-energy electrons is best ilh-rstrated with the so-called

"universal curve," shown in Fig. 1.3. The universal curve shows the electron mean free

path versus incident electron kinetic energy and shows two competing effbcts. The first

effect is a general decrease in the electron mean free path through the material with

increasing electron energy. Thi.s is cilused by greater availability of energy levels for

inelastic scattering in the material as the electron energy is increased. The second effect

shown in the universal curve is a general ittc'reuse in the electron mean free path thror.rgh

the material with increasing electron energy. This is just an artifact of the electron's

greater velocity at higher energy, which allows it to travel f'arther befbre being inelastically

scattered.

As shown in the figure, the flrst of tlrese efl-ects dominates at lower energies, while

the second dominates at higher energies. Around -50-100 eV the two ef'fects "balance,"

producing a broad rninimum in the mean free path around these energies. By a happy

coincidence, this minimum occurs at electron energies for which the de Broglie wave-

length is short enough to return useful information on the surface structure. By another

coincidence, the n-ragnitude of this rninimum hers er mean free path of a few angstroms,

just the right magnitude to be sensitive to the flrst f'ew atomic layers of the material.

In modem LEED experiment.s, a crystalline surface is illuminated with a beam of

low-energy (< 1000 eV) electrons to produce a diffraction pattern. The positions of the

diffraction spots give an indication of the symmetry of the crystal lattice, Because LEED

is a surface-sensitive technique, however, the positions of the diffraction spots really only

give an indication of the positions of the atoms in the top atomic layer, and perhaps the

positions of adsorped atoms. In order to determine the type of crystal lattice in the bulk
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material, a bulk-sensitive technique such as x-ray diffraction nust be used [5].

Besides examining the positions of the diffracted bearns, additional information may be

extracted from the experiment by observing changes in the intensity of the diffraction spots

as the sample is rotated or the energy of the incident electrons is changed. Specifically,

the following types of data may be collected [6]:

I-V c:urves. These are plots of the diffiacted electron beam intensities 1as a function

of the incident electron energy (or, equivalently, the potential 1,z through which the incident

electrons are atcceleLated). In this way, the changes in the diffractecl electron intensity may

be observed as the incident electron wavelength is changed. Care must be taken to ensure

that the incident electron energies are low enough that they will be sensitive to scattering

by atoms near the surfztce, rather than the bLrlk. The incident electrcn energies must also

be high enough so that the incident electron wavelength is not longer than the scale of

the atomic distances being studied.

1-7 curves are by far the most cornmon type ol'data collectecl in LEED experiments,

and will be the data set used for the research with artificial neural networks to be discussed

later. The data is collected fbr a particular diffractecl electron bearn, fbr fixed incidence

angles d (polar angle) and tp (azimuthal angle).

I-0 curves. In this type of data, one measures the diffracted electron intensity lbr a

particulal diffracted beam, varying the polar incidence angle 0 ancl keeping the azimLrthal

angle g and incident electron energy flxed. This is the type data collected by Davisson

and Germer in their 1927 experiment to measure the wavelength of the electron.

I-9 curve.v. These are produced by measuring the diffracted electron intensity fbr a

particular diffracted beam while varying the azimuthal incidence angle p. The polar

incidence angle 0 and electron energy are held constant.



l 0

For any of these types of curves, the data is generally collected fbr each of several

different diffraction beams. The data for beams with symmetrically equivalent Miller

indices (such as (10), (T0), (0i), and (01)) are generally averaged to yield the final

data set. Also, the units in which the intensities are measured are not easily related to

theoretical calculations, so intensity units are taken be arbitrary and are usually normalized

in some way. One may, for example, arbitrarily set the maximum intensity in a data set

to be unity, and scale all other intensities accordingly.

It is believed that there is roughly an equivalent amount of information about the

surface structnre contained in each of these three types of darta sets [6]. In the case of 1-9

and I-<p curves, the infbnnation content is constrained by how much the incidence angles

canbeva r i ed (0<e<90o ,0<p<180 ' ) .Fo r I -Vda ta , t he re i sap rac t i ca l cons t ra i n t

on the range of incident electron energies, which also constrains the information content:

the electron wavelength must be short enough to contitin information etbout the distance

scales being qJudied, and long enough to be surface-sensitive. The low-energy electrons

used cannot be of arbitralily low energy; the electron de Broglie wavelength must be less

that the interatomic distances being stLrdiecl (- 2 A) in order fbr the rnetl.rod to return any

useful information on the surface structure. This places a lower energy limit on LEED

electrons of about

F - - 40  cV , ( l . l )
2trt,,-\'2

where h is Planck's constant,'rn,e, rs the electron mass, and ) is the electron de Broglie

wavelength.

I t,2
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1.2.1 MultipleScattering

The surface atoms of a material have a large scattering cross-section (comparable with

the physical cross-section) with respect to incident low-energy electrons. Thi.s means that

the scattering probability for low-energy electrons in a close-packed solid is very high,

and it is this property that makes LEED surf'ace-sensitive. This same property also adds a

complication to the analysis of LEED data: electrons entering the material will generally

be scattered multiple times on their way out of the material. This multiple scattering

is fairly difficult to deal with computationally, and only in recent years has computer

technology advanced to a point that has allowed accurate LEED predictions to be made

which adequately allow for it.

Chapter 2 reviews several methods which are used to perfbrm the so-called LEED

dynamic'ul c'ulculutions which allow fbr this multiple scattering of electrons.

1.2.2 Thermal Effects

The behavior of the diffracted electron beams will generally depend upon the temperature

of the sample, since increasing temperatures cause the atoms in tlre crystal to vibrate with

increasing amplitr-rde and frequency about their equilibrium positions. The three most

important effects that are observed when the temperature of a sample is increased are a

broadening of the diffraction spots, a general decrease in the intensity of the spots, and

an increase in the intensity of the background illumination (between the spots) [6].

The broadening of the diffraction spots can be attributed to momentum transf-er between

the electrons and the crystal lattice via phonon excitation. The decrease in spot intensity

with increasing temperature is dr.re to interference effects: as the temperature is increased,
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the atoms in the sample vibrate about their equilibrium positions, partially disrupting

periodicity of the crystal lattice. This decrease in intensity may described by t7l

I - Io cxlr(- i("'')C'') , (1 .2 )

where 1 is the difflacted electron intensity, d; is the intensity that would be observed if

the electrons were scattered from a rigid lattice, and (,u2) is the mean sqlrared amplitude

of vibration in the direction of G, the reciprocal lattice vector associated with the electron

beam. The exponential tactor in Eq. (1.2) is called the Debye-Wller fttctor, and, is often

written as cxp(- 2,411).

The third thermal effect, the increase in background intensity with increasing tem-

perature, is essentially due to the decrease in spot intensity. The electrons that would

otherwise have been scattered into the beams are instead scattered into the background

when they no longer satisfy the Bragg scattering conditions due to thermal vibrations of

the crystal lattice.

1.3 Experimental Apparatus

A simplified version of the apparatus used in a typical LEED experiment is shown

schematically in Fig. I.4. The entire apparatus is contained within an ultra-high vac-

uum (UHV) chamber, which maintains a vacuum o1 19 ttt torr or better. The ultra-high

vacuum is necessary to reduce the rate of accumulation of contaminants on the surface.

so that the surface can be kept relatively clean during the experiment.

A beam of electrons is ernitted by a heated tungsten filament inside the electron gsn.

Other components of the electron gun serve to accelerate, collimate, and focu.s the emitted
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Figure 1.4: Schematic diagram of a simple LEED apparatus.
(From Zangwrll, 1988 t2l.)
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electrons in the direction of the sample, which is mounted on a movable stage that can

be rotated to hold the sample at any desired angle with respect to the incident electron

beam. The emitted electron beam typically has a current of - 10 e A, conesponding to

about 1010 electrons per second. The bearn typically has a cliameter of less than I mm.

Electrons scattered by the sample arre reflected back toward grid G1, which is held at

the same potential as the sarnple (earth ground) to provide field-free region through which

the electrons can travel before reaching the grid.s. This field-free region i.s necessary in

order to avoid unwanted deflection ol the scattered electrons. Grid G2, called a:;uppressor

grid, is held at a negative potential designed to reject inelastically scattered electrons so

that only elastically scattered electrons pass through to a fluorescent screen 5'. Screen S is

held at a large positive potential that scrves to accelerate electrons toward the .screen; the

extra kinetic energy helps to excite the phosphors in the screen so that the electron impacts

are more visible. The fluorescent screen rnay be viewed through a window in the vacuun

chamber. More modern LEED systerns may include a charge-coupled devide (CCD)

camera in place of thc phosphorescent screen fbr more accurate intensity measurements.

Other grids may be present, in addition to those shown in the figure. For example,

there may be two suppressol' grids that allow a range of electron energies to pass through to

the screen. There ntay also be an additional grounded grid placed between the suppressor

grids and the fluorescent screen to help prevent the large electric field fiom the fluorescent

screen from affecting the suppressor grids. Helmholtz coils may also be present to cancel

the geomagnetic field present in the labolatory.

Fignre (1.5) is a typical LEED I-V curve. which shows the intensity of a LEED

diffraction spot as a function of incident electron energy. There will be one such curve for

each diffraction spot, with symmetrically equivalent beams being theoretically identical.
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Figure 1.5: Typical LEED I-V curve.
The curve labeled "exact" is the product of a full dynamical LEED calculation for Ni(100).
The curve label "kinematic" does not include the multiple scattering effects included in
the dynamical calculation. Note the shift in peak positions and appearance of additional
peaks in the dynamical calculation. (After Van Hove, Weinberg, and Chan, 1986 [6].)

These curves contain information about the surface structure, since changes in the structure

produce changes in the shape of the curves. It is the goal of LEED surface structure

analysis to extract information about the surface from these curves.

To extract surface structure information from a LEED I-V curve, one generally cal-

culates theoretical 1-7 curves for a number of plausible surface structures, then com-

pares each of these with the experimental curve to determine which theoretical curve best

matches the experimental data. One then assumes that this best match represents the actual

surface structure. It is this comparison between the LEED theoretical and experimental

1-7 curves that is the focus of this Dissertation.
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1.3.1 Instrument Response Function

In any real laboratory measurement of LEED diffraction data, the observed data will differ

fi'om their theoretical ideal because of imperfections in the crystal lattice and instrument

distortion. The efl'ect of instrument distortion can be modeled using an instrument re-

spon,se Junctirm which corrects for such effects as the energy spread in the incident electron

beam and the finite aperture width of the instrument.

Let 1(s) be the intensity of the diffracted electron beam measured by an ideal instm-

ment, and let ,/(s) be the beam intensity measured by a real instrument. Here s represents

the momentum transf-er from thc incident to the diffracted electron beam,

s -  k , , , ,1 ,  -  k t t  , (  l . - r )

where k1; is the wave vector of the incident electron beam and k,,,,1 is wave vector of the

diffracted electron lream. Both 1(s) and ./(s) are assumed to be beam intensities measured

by diffraction from a perf-ect crystal lattice, so that they differ only by the inclusion of

instrument distort ion in ,/(s). Then fronr l inear system theory, the intensity,/(s) measured

by the real instrument may be written as the convolution [8,9, l0]

, / ( " )  -  F { t ( r ) }  *  1 (s )  , (  1 . 4 )

where l(r) is the tronst?r.function linking 1 and ../, r is a displacement vector connecting a

pair of lattice points, and F denotes the Fourier transform of t(r). The Fourier transform

of the transfer function is known as the instrument response f'unction

7 (s )  :  F { r ( r ) }  :  [ *  t ( r ) r ; i ' =  d , s
, t 6

Eq. (1.4) may then be written

(  l .s )

. / ( " )  - 7 ( s )  x1 (s ) (  1 .6 )
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The instrument response function may be written as the convolution product of several

individual response functions, each of which describes a particular contribr.rtion:

Z(s) :2."(")  *  4. ,"(s)  *  7] , , (s)  x I i ,a(s) ( r .7)

Here 7""(s) is the contribution due to the energy spread in the incident beam, 4-(r) is due

to the finite aperature width of the detector, 4,,(s) is due to the finite source extent, and

?ua(s) is due to the finite beam diameter. Each of these contributions to the instrument

response function may be determined from measurable properties of a diffracted electron

beam for a particular LEED system [6].

1.3.2 Preparation of Samples

Materials to be studied in a LEED experiment must first be prepared to ensure that a well-

ordered, cleaned crystal face is availablc t6l. A large number of procedures for preparing

a sample have been developed over the years, and each material has its own procedure

for effective preparation. Typically one begins by cleaving or cr"rtting the sample along

the desired crystallographic direction. One then begins cleaning the surlace in vzrcuum

by any of several methods. The sample rnay, for example. be heated to near its melting

point for several hours (a process called unnealittg) to help desorb contaminants from the

sample into the surrounding vacLrum. One may also perfbrm chemical cleaning of the

sample, or bombard the sample with an ion beam in an attempt to knock contantinants

from the surface (called sputtering). Cleaning by spr-rttering will generally be followed

by additional annealing in order to repair the damage done by ion beam to the surface

crystal structure. Analysis of the gases fi'om the vacuum chamber gives an indication of

the effectiveness of the cleaning process.



Chapter 2

LEED Dynamical Calculations and
Structure Analvsis

"Tum consummotum hubet plenumque bonum sortis humanae cum culcuto omni malo

petit altum et in interiorem noturue .sinum venit."

- Seneca, Nalurules quaestiones, I, praef., 7

TtU calculation of preclicted LEED difliaction spot intensity vs. electron energy

(I-V ) curves is a subject of great interest in surface physics. An I-V curve may be thought

of as a sort of "fingerprint" of the surlace being studied; changes in the surface parameters

(e.g. compositions and interlayer spacings) will produce changes in the 1-V curves, so that

a careful analysis of the 1-V curves can yield information about the surface structure.

The calculation of theoretical 1-7 curves is complicated by the presence of multiple

scattering of electrons by the surf'ace atoms. This multiple scattering may be attributed

to the large scattering cross-section of low-energy electrons by the atoms. Despite this

complication, methods have been developed to allow for this multiple scattering and to

l 8
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calculate LEED 1-7 curves for a given set of surface parameters with reasonable accuracy

[6, 11.|. Because of the complexity of the calculations, however, it has not been possible

to directly "invert" the LEED I-V calculations; that is, to solve for the surface parameters

for a given I-V curve. Instead, one is fbrced to calculate theoretical /-Vcurves for a

variety of plausible surface stmctures, then use some means to decide which calculated

structure best f i ts the given curve.

This chapter will briefly review the background behind the LEED theoretical calcula-

tions, including the corrections for multiple scattering of electrons. This will be followed

by a description of several of the niethods which hzrve been devised to find the best fit

within a set of calculated 1-7 curves to a given (experimental) curve. Chapter 3 will in-

troduce a new method for performing this search that will be the focus of this Dissertation:

the use of artificial neural networks.

2.1 LEED Dvnamical Calculations

As mentioned in Chapter l, the most common data set collected in a LEED experiment

is a plot of diffraction spot intensity vs. incident electron energy, or I-V curve. The

calculation of a predicted I-V curve from theory is relatively complicated compared to

an analogous calculation in x-ray diffi'action due to the presence of strong multiple scat-

tering of electrons by the surface atoms. This multiple scattering nust be allowed for

in any LEED calculation, because it introduces features into the 1-7 curves comparable

in magnitude to the features that would be found in a purely kinematic calculation (one

not including multiple scattering). The calculation of a LEED 1-7 curve that includes

multiple scattering is termed a dynantictrl calculation, the fundamentals of which will be
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reviewed in this section.

Intra-atomic scattering is internal to the atoms of the crystal surface. It may be
understood as an acceleration of the electron while it is in the vicinity of the atom. This
causes the electron to emerge on the other side of the atom wrth a phase difference in its
wave function relative to what the phase would have been in the absence of the atom.
Interatomit'scattering is multiple scattering that takes place between atorns of the crystal,
both among atoms within the same atomic layer and between atomic layers. In adclition
to these two types of multiple scattering, there is a potential energy step al the crystal
surface due to its inner potentialwhich must be considered during the calculations. Each
of these eff'ects will be described below.

The presence of n-rultiple scattering introduces several features into the clynamically
calculated 1-7 curves that differentiates thern from their kinernatically calculated counter-
parts' Intra-atomic scattering causes peaks in the I-v curve to shift positions relative to
their kinematically expected positions, largely toward lower energies. lnteratomic multiple
scattering also shifts these peak positions, ancl also introduces adclitional peaks into the
I-V curve, beyond those that woulcl bc expectecl in a kinenatic model. These extra peaks
are a consequence of the additional scattering paths introduced by multiple scattering;
each peak corresponds to a chain of scatterings that satisfies the Bragg condition [6].

2.1.1 The Inner potential

The potential within a crystal is usually described by a so-called ntffitt-rin model, as
shown schematically in Fig. 2.1. (Due to the difflculty of drawing four-dimensional

diagrams, the figure shows a version of this potential with just two spatial dimensions;
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Figure 2.1: Muffin-tin potential, for two spatial two dimensions.
(From Van Hove, Weinberg, and Chan, 1986 [6].)

the figure's third dimension shows the potential energy.) Each atom in the crystal is

envisaged as being surrounded by a spherically symmetrical potential out to a radius R,117

(the mffin-tin radius) from the center of the atom, beyond which the potential is assumed

to be a constant (called the muffin-tin constanl). The inner potential of the crystal, which

is the kinetic energy that an electron gains upon entering the crystal surface, includes both

the muffin-tin constant and a contribution due to the dipole layer at the surface barrier

t6l.

The presence of this inner potential step at the crystal surface has several effects.

First, it will cause a rigid shift of the I-V curve along the energy axis. This is because

an I-V curve is plotted against the incident electron energy; if the incident electrons gain

kinetic energy at the surface from the inner potential, each feature in the 1-7 curve will
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appear at a lower incident energy than it would have in the absence of the inner potential.

Second' the incident electron waves are reliactetl at the surface. The component of the

electron momentllm parallel to the surface is conserved across the surface boundary, while

the component of the momentum perpenclicr-rlar to the surface is not. Third, there will be

a re.flection of the electron wave at the surface. In most LEED calculations, the incident

electrons energies are tens or hundreds of electron volts, while the inner potential step is

just a few electron volts; consequently, this ref-lection effect is small and is often neglected.

Fourth, if the inner potential step has structure, there will be a tlifJ'ruction. of the electron

wave by the inner potential. Experience ha.s shown that this inner potential diffraction

can be safely ignored in most cases [6].

2.1.2 InelasticProcesses

As described in Chapter l, the LEED experimental apparatus contains a set of suppressor

grids which allow only elastically scattered electrons to reach the screen. In performing

a dynamical LEED calculation t>t an I-V curve, it is therefore important to identify the

various electron scattering mechanisms so that inelastic processes are excluded fiom the

calculation of the elastic intensity.

The dominant inelastic scattering processe.s in LEED are through excitltion of bLrlk and

surf-ace plasmons (charge density waves in the electron gas) and single-electron excitations

[6' l1]. Excitation of phonons (elastic waves in the crystal lattice) is a borderline case;

while this is an inelastic process, only a small amount of energy and momentum is

transfered between electrons and the crystal lattice through phonons ancl may therefore be

termed "quasi-elastic." Phonon lossses are typically on the order of meV and are therefore
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collected with the elastic electrons unless one is using a very high-resolution detector.

Inelastic processes are all accounted for in the LEED dynamical calculations through

the introduction of a mean free path for the incident electrons. This mean free path may

be modeled by simply adding an imaginary component to the potential energy inside the

crystal. This may be seen by writing the electron wave function t! inside the crystal as

' t ! - 1'. i[" ' '  e-k'" ' , (2 .1 )

where the first factor represents the traveling wave, and the second factor models a

damping envelope due to inelastic scattering. Here A;,. is the wave number of the electron,

and k; is a damping constant related to the clectron mean free path ). by

I

N ;
(2.2)

Eq.  (2.1)  may he wr i t ten

where I '  is complex:

Since the electron

and k is complex,

k : k ,+ i , k i .

energy within the crystal may be written

L +I/,, : 
fi'zk,

" 2ttt,-

this implies that 76 is also complex:

(2.3)

(2.4)

/ ,  5 \

Vt :Vo ,+ ivo i (2.6)
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Often the imaginary component of I/6 is taken to be a fixed value of -4 eV. Using

Eqs. (2.4) and (2.6) to equate real and irnaginary parts of Eq. (2.5) shows that the imaginary

part of the potential 7s rnay be related to the reciprocal mean free path k; by

f  , . '

Vt; : Ll,';k;
rn,e

(2.1)

The real part V11,. of the potential is just the inner potential of the crystal described earlier.

2.1.3 Intra-atomicScattering

Just as the variety of inelastic electron scattering processes is modeled by a single number

(the mean fiee path or imaginary componcnt of the inner potential), so the complicated

intra-atomic scattering of an electron within an atom is rnodeled by a set of quantities

called the pfutse :;hilis. Physically, the plrase shil't represents the clifference in pha.se of

the angular momentum components of the electron wave function due to the presence of

the scattering atom.

The phase shifts are determined by solving the Schrcidinger equation for the system

of electrons irtteracting with the atom. The solution to the Schrodinger equation is the

product of the spherical harmonic Yn,,,(0,p) and a radial function R.,(r), where 1?;(r) is

the solution to the radial differential equation [6]

- #. G) # l,' *P) *',## o, r, t

.l-+* I/,, (r') + t4,,,(r)l /?,(") : E R,1(r) . (2.8)
Lr l

Here I is the angular rnomentum quantum number, Z is the atomic number of the atoms
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in the crystal, V".(r) is the screening potential, V""(r) is the exchange potential, and -E is

the kinetic energy of the incident electrons.

For the case of a constant potential, Eq. (2.8) has solution

.i,(kr) : iln,l' (A;r) + nl41r'r1)

where 77 is the spherical Bessel function, and hf1) and

1

,  ( ' ) )
h) '  are the spherical

(2.e)

Hankel

atomic

to the

(2 . l0 )

(2.t2)

functions of the first and second kind, respectively [2]. The presence of the

potential inside the muffin-tin radiurs simply introduces a phase shift dr relative

constant-potential case, so that the solution to Eq. (2.8) then becomes

jl"1r1zt,a,)nf 1)(1,") + n,l'') 1t',r11

l,,lt)' 1kR.*1.) - L1h,lr) &R*r.) 
)

' RiT'*'ti
I l t :  -- - t  

Rr (Rmt ' )

The phase shifts are found by solving the radial differential equation (2.8) for the

muffin-tin potential. This is done by numerically integrating Eq. (2.8) from 0 to the

muffin-t in radius R.xa1.to f ind thc solution inside R,mr.Eq.(2.10) is used as the solution

outside Rtyt , and logarithmic derivatives of the solutions in the two regions are equated

at the boundary R,yL..The resLrlt  is [6]

cxp(2id7) -
LJLI'2) (kR,*t) - tr, lzt ' (kR,rr.) (2.n)

where

The phase shifts d7 are dependent on the angular momentum of the electron wave (through

the quantum number l) and on the electron energy. In calculating LEED 1-7 spectra, one

specif ies a set of phase shifts for I :  0,7,2,.. .  ,1,,, , , , ," for various electron energies, then

interpolates between those energies to find the phase shift for any desired energy and

angular momentum.
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2.L.4 InteratomicScattering

To calculate the efl'ect of the multiple scattering that takes place between the atoms of a

crystal, we begin by considering the scattering between two atoms. We will generalize

this result to calculate the scattering among atoms in a plane, and finally the scattering

between planes of atoms. The discussion here follows that given in Reference t6l.

To begin, consider two atoms, labeled I and 2, at positions f1 and f2 and with atom 1

having angular momentum 11. Assume that atom I emits a spherical electron wave of

angular momentunr l ' (describecl by quantum numbers l l , ' ,rn, ')).  Assume also that this

electron wave arrives at atom 2 as a spherical wave of angular momentum -L (described

by quantum numbers ll,,rn.)). Then the propagation of the electron wave from atom I to

atom 2 is given by the Green's function

G',),,, - -n*0,2;t,\,!,o (L, L', L) rr,l!) g:1,i,2 - i1l)

x Yr,, (i, - ft) ,:xp l-; i,,,,. (r-, - ri)] 1 (2 . t3 )

which describes the amplitude of the wave arriving at atorn 2. Here A; is the wave number

for the beam being calculated, Al;,, is the wave vector of the incident plane wave, and the

coefficients o, (L, L' , L) are deflned by

o,(L,  L" L])  :  
I  U(0)\ 'L ' (O) \ ' ; , (Q) dQ .  (2.14)

4n  s r

The summation in Eq.(2.13) is over al l  values o1-/1 ancl ?r?,1 sl lch that l /  - l ' l  < 1,, 11,+1,'

and m,1 : nt,lrn,'. The wave number k is complex; its imaginary component models the

finite electron mean free path due to inelastic scattering, as described earlier.

While Eq.(2.13) describes the propagation of an elechon wave from atom 1 to atom

2, the scattering of an electron is described in terms of the phase shifts d1 by the f-matrix
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element

(2.ts)

Using Eq' (2' 15) to describe the scattering ancl Eq. (2.13) ro describe rhe propagation of the
wave, we can form various products of 17 and G't)r,, to describe the different combinations

of multiple scattering. In particular, all scattering paths that terminate at atom I are
described by the surnmation (dropping angular momentum subscripts)

T1  : t \  + t lG l ' z |2  + t \G t ' z t ' 2c2 t l , t  + r t6 t ' z r ' 2 "z t lG t ' z t2  + . . .  ,  ( 2 .16 )

.  h ' 2  r 1 rt 1 - - 
2., \ t  ) 

sirr r i7 r 'xp(i dy )

while those that terminate on atom 2 are described by

Tz  :  t 2  l t ' 2G21 t t  + t ' 2G2 I t tG t ' r f , ,  + rz6z ty * t z *G2 t t ,  + . .

lt has been shown I 13] that simply related by

. _ t r )

+ I 'c ;"72

. , _ . )  t

+  t ' G " - T t  1

or rn matrix notation,

This result may 1v" atoms as

?r and T2 are

T I I

.12 +'2

f:, l-l I -tte"j-'l-"I
Lr,) |  t rG2l r  ]  Lr,  l

be generalized to desclibe tlie scattering among

(2 . t7 )

( 2 .18 )

(2.1e)

(2.20)
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pment sirnilar to that fbr l/ atoms described earl

If we assume that the original incident electron wave is a plane wave cxp(iir,.r)

and that the scattered electron wave is a plane wave cxp(i,8,,,,r,. r], tlien the scattering

amplitude fiom N atoms is given by

A/

I ' t . t ,  -  !  cx; ,  f ,  (* i , ,  I r , , , , )  , ' , l r1 i  , ,  (2.22)
r l

For a single plane layer of identical atonls arrangecl in a periodic array, the symmetry

of the layer implies that

by

- l

T l

T "

TJ

:

rN

(2.21)

(2.23)

(2.24)

case the

The scattering due

T1

T'2

T3

TIV

followine a develo ier. [n this
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Green's functions are siven bv

. ),mGtrr, : -4ni'---:1,n+' ,"

y Yr, (r, -,1, + p)

o, (L, L' , rrl n,fl (t'V.i

."p f-; (" (+ - r'r t

-n+Fi)

F)l (2.2s)

where P extends over al l  the latt ice points in any of the planes, except for r-, i-ra;.1P:0.

Finally, the amplitudes of the difll 'acted plane waves is given by

(2.26)

where A is the area of a two-dimensional unit cell in one of the atomic planes. The square

of this amplitLrde gives the 1-V cr.rrve intensity.

Numerous schemes have been devised to perform this calculation efficiently. For

example, in the ktyer douhling method, one calculates reflection and transmission matrices

for a single pair of atomic layers, then iteratively applies the method to yield matrices fbr

4,8, 16, . . . atomic layers. This provides an efficient means for calculating the reflection

and transmission matrices for electron penetration into the bulk material, to which matrices

representing the surface layers may then be applied [6].

The Renormalized Forward Scattering [6] procedure is another (sonewhat more com-

plex) such procedure, and was used to calculate the LEED 1-Il curves for this work.

2.2 LEED Structure Analvsis

The dynamical calculations .just describecl are too complex to allow a direct inversion,

in which one could solve for the surface parameters given the I-V curve. Instead, one
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calculates theoretical 1-7 curves fbr a variety of plausible surface structures, and deter-

mines which of these theoretical curves best matches the experimental curve. While one

could attempt to visually determine which 1-7 spectra best match the experimental data,

a better (and more objective) approach is to calculate a number fbr each of the candidate

structures that indicates how closely that structure matches the experirnental data, then

Llse some method to search for the candidate structure that optimizes that fit. This section

will review several methods that have been used to carry out this search for the best fit

to given LEED 1-7 spectra.

2.2.1 Reliabilitv Factors

We begin with a description of reliabilitv .fu.ctrtrs, or R-.foctors usecl in LEED stuctural

analysis. A reliability factor is a number which gives an indication of how closely a

calculated I-V curve matches an experimental curve. By calculating an R-lactor between

the experirnental I-V data and each of the canclidate structLres, one can determine the

best fit to the experimental data by fincting the calculatecl structure with the minimum

R-factor.

One could, for example, calculate the root-mean-square error between the experimental

data and each calculated I-V curve, and use the result as an R-factor. However, some

consideration must be given to the physics ol'the problem, rather than searching only for

the mathematical best fit between spectra. R-factors are generally designed to emphasize

features of the 1-Il curves thzlt are sensitive to surface structural parameters, while de-

emphasizing f'eatures that are sensitive to non-structural surface properties. Typically

an R-factor will emphasize such features in the 1-7 spectra as peak positions, relative
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peak heights, peak skewness, and peak widths, although there is little agreement on the

relative importance of each of these features in determining surface geometry [6]. For that

reason, a variety of diff'erent R-factors have been proposed, each of which is designed to

emphasize different features or to be computationally advantageous in some way.

One commonly r-rsed such R-factor is the Pendry R-.fhctor ll4l. It is designed to

emphasize peak positions, giving equal wcight to all peaks regardless of height. It also

avoids calculating the second derivatives found in some other R-factors, which can lead

to computational difficulties. To begin, Pendry defines the function Y (E) by

- t

l r - ') - (E) L ,  +W

where L(E) is the logarithmic derivative of the I-V spectrum,

(2.27)

L(E) - r ', lr , (2.28)

/ is the intensity, and L\1;. is the electron self-energy, which is around -4 eV for most

materials at electron energies etbove about 30 eV. The logarithmic derivative L tends to

treat peaks equally, while the form of the Y-function avoids singularities when 1 : 0.

Using this l'-function, the Pendry R-factor RPE is defined as

R,PE -
1 _  / / r ' .  - v .  \ z , n
l - *  

|  \  
l s , r ,  -  l * l  . , , ' /  t l f '

(2.2e)
Du .l (t;,, * Y'i"-,,,) ,]E

Here }/6,,, is the Y-function of the theoretical (calculated) I-V curve, and Y6"*,,, is the Y-

function of the experimental I-V curve. The sums are taken over all diffracted beams $.

A value of 0 for R,PE indrcates that the theoretical and experimental curves are identical;

I indicates that they are uncorrelated; and 2 indicates anticolrelation.
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The significance of a minimum in the Pendry R-factor may be described by the Pendry

RR-factor,

RR -g (2.30)
R,

Here o(l?) is the standard deviation of the Pendry R-factor and R is the mean R-factor.

From statistical theorv.

o (R\  E
(2.3t)-E_ - 

VF '

where l/ is the number of well-separated peaks in the I-V curve. Using this result and

the fact that the I-V curve peak widths are 2ll{;l gives the RR fhctor as

(2.32)

where dE gives the the total cnergy range fbr the I-V curve. This resirlt allows one to

estimate the 1-o error in the R-factor due to random errors in theory and experiment.

2.2.2 Exhaustive Global Search

The simplest and nrost reliable (albeit slowe.st) search method fol LEED sudace structure

determination is to use an exhaustive global search. With this method, one calculates

1-7 curves for a large number of possible candidate structures, calculates an R-factor for

each one, then simply selects the structure with the smallest value of the R-factor. An

RR-factor may also be calculated to give an indication of the significance of the minimum

found.

Provided the search is performed over a sufficiently fine grid and wide range in

parameter space, the exhaustive global search is guaranteed to find the structure which

RR- (#)"' ,
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globally minimizes the R-factor. One then hopes that the structure with the minrmum

R-factor is the one with the correct geometry.

This is not, however, necessarily the case, since 1-7 curves do not necessarily map

one-to-one with surface structure parameters. In other words, there may be more than

one surface structure that may lead to 1-7 curves that are indistinguishable to within

calculational and experimental uncertainties. One known difficulty is that LEED I-V dat"a

is relatively insensitive to registries (layer displacements parallel to the surface), so that

different registries can produce similar I-V data [6]. Another difficulty is the relative

insensitivity of LEED data to half-wavelength changes in the layer spacings, since this

will result in phase changes of 2tr in the diffracted electron wave [6]. This has led, for

example, to uncertainties in determining the interlayer spacing for the Ni(100)-c(2x2)-O

sys tem [5 ,  16 ,  17 ,  l 8 l .

While the exhaustive global search method is guaranteed to find the global (rather

than a local) minimum in the error surface, it can also require substantial amounts of

computer time; the computer time required scales exponentially with the number ,A/ of

search parameters being sought. Because of this, much ef1brt has been expended to

develop faster search algorithms. Several of these are described below.

2.2.3 Steepest Descent Method

It is a well-known result from elementary calculus [19] that the directional derivative of

a function of several variables /(/) has its maximum in the direction of the gradient,

Vf(i) A numerical method which takes advantage of this fact, called the steepest

descent method, I20, 2ll may be used to search for a minimum in .f. To implement a
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steepest-descent algorithm, we begin by making an initial guess .x-(0) for the values of

the independent variables d that will minimize the function to be optimized, g(i), where

i - (rr, T,Zt . . . , :L,,)'1' . The next estimate for .d will be given by

(2.33)

for some constant a > 0. We wish to choose a so that g(ilr)) will be significantly less

that the previous estimate, g(EQ)). The appropriate choice is the value of rv for which

/r.(a) - g(:ri\rtl rvVrr(r-to);; (2.34)

is minimum. In order to f ind this rv quickly without having to perfbrm a t ime-consuming

iterative root-finding method, one chooses three valucs (\1, (\,2, and rr3 (hopefully near the

optimum a), interpolates with a quadratic polynomial P, then uses the minimum of P to

estimate the optimum rv. The entire procedure is then repeated until the minimum z7 is

found to within the desired tolerance.

The gradient descent method has an advanterge over the exhaustive search method

in that it scales quadratically (- 1/') with the number ,A/ of parameters being sought

[22], whereas the exhaustive search rnethod scales exponentially with l/. Its primary

disadvantages are that is is prone to finding local (rather than global) minima in the error

surface being searched, and that convergence can be slow under some circumstances. The

steepest descent nlethod is often used fbr a refined search once an approximate solution

has been found by some other method.



35

2.2.4 SimulatedAnnealing

Many numerical algorithms have been developed which attempt to find the global min-

imum error for a problem more efficiently than the exhaustive global search, while also

zrvoiding convergence to local minima. One such algorithrn is sinuilated annealing, in

which a set of search parameters is treated murch like a set of atoms in a crystalline metal.

An error function is to be minimized, and is assigned a role analogous to energy in a

physical system. One applies random perturbations (analogous to heat) to the parameters

being searched and preferentially allows the parameter set to change whenever the energy

function is lowered. Throughout the procedlrre, one slowly lowers a parameter analogous

to the temperature to that the algorithnl converges to a minimum of the error function.

To implement a simulated annealing algorithm, one begins be selecting a set of pa-

raneters fbr wlrich an error function ,D (analogous to energy) is to be rninimized. One

also must select an initial value for the "temperature" parameter, fiy and an initial guess

for the search parameter values, fbr which the initial "energy" -D6 can be calculated. To

begin the search, one perturbs each of the A search parameters by some random amount

6,,, ('n : 1 . . . l/). If the energy E.,i of these new parameters is less than the energy Ei

of the current parrameters, then the new search parameter values are accepted as the new

current values. If the energy E1 of the new parameters is greater tlian the energy Ei of

the current parameters, then the new parameters are accepted as the current parameters

with probability [23]

r? ?5'r

where Z is temperature parameter, and k3 is Boltzmann's constant, which serves to set E

and 7 in the same units. This procedure is repeated a set number of times, after which the

/  E i .  -  E ; \
c x D l - l'  \  knT  /
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temperature 7 is lowered and the entire process repeated until some convergence criterion

is satisfied.

Simulated annealing has been applied to LEED structural analysis fbr the Ir(110)-

p(2xl) surface 1221. In this case, the Pendry R-factor R,PE serves the role of the energy

parameter E. since the objective is to minimize the R-factor.

2.2.5 GeneticAlgorithms

A relatively recent innovation in optimization problerns is the use of genetic ulgorithms,

which attempt to perform optin-rization in a way that mimics natural selection in biological

organisms. One begins with a set of "chromosomes," representing the independent variable

and modeled as strings of bits. One then implements a reproductive cycle (including

mutations and natural .selection) which ploducc the next generation of chromosomes.

Natural selection pressures are modeled using a "fitness function," which the chromosomes

will tend to maximize through the course of evolution. One can thus maximize any desired

function by using it as a fitness function.

Implementation of a genetic algorithm may be most clearly illustrated with a simple

example [24]. Suppose we wish to maximize the function y :. , '2 over the range z €

[0,31], so that jr may be represented as a five-bit integer. We begin by selecting several

random values of ;i: by selecting random flve-bit integers (Table 2. l); this will comprise

the initial population of chromosomes. For the purposes of illLrstration, the table shows

a population of four chromosomes, althourgh a practical problem would typically employ

a larger population. The genetic algorithm will atternpt to preferentially select those

chromosomes in the population that best maximize the.fitness .function lJ : r'2.
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Initial population, :i;
binary decimal

Next generation

, l ' ( . r )  :  . r2  counls .  f  ( i  l - f
10000
00001
01001
00001

r6
I
9
I

a-)

0
I
0

256
I

8 l
I

Table 2.1: Genetic algorithm results fbr maximizingy:.f (r) (initial population).
The first two columns show the initial chromosome population, chosen at random. The
third column gives the fitness function fbr each chromosome, and the last column gives
the number of copies of each initial chromosome that will be used in the mating pool.
The average va lue o l ' . / ( ; r )  is  7  -  84.75.

As shown in Table 2.1, we begin by evaluating the fltness function ./ for each chro-

mosome value :r in the population; larger values of ./ indicate chromosomes that better

maximize the fitness function.

The next stage of the algorithm is to perform reproductktz of the chromosomes in the

initial population. This is done by preferentially choosing those members of the initial

population with the highest values of the fltness function to make up a mating pool from

which the next generation of chromosomes will be formed. In particular, the mating pool

consists of ./(r) / 7 copies of chromosome rr, as shown in the table. From this mating

pool, chromosomes are randomly arranged in pairs which will serve as the "parents" for

the fol lowing generation.

The reproduction stage is followed by the crossover stage, which mimics genetic

crossovers [25]. For each pair of chromosomes in the mating pool, a crossover point is

chosen at random within the string of bits. Offspring are formed for the next generation
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Mating pool
decimal binary

Crossover
Point Mate

New Population
Binary Decimal

New

.f (r)
r6
t6
l6
9

110000
100100
110000
010101

r 0000
10001
10000
01000

256
289
256
64

-)
4
I
2

I
a--)
I
3

16
1 a
t t

l 6
8

Table 2.2: Genetic algorithm results for maximizing,y - .f (r') (seconcl generation).
The first two columns show the cluomosomes in the mating pool, wherc the vertical
bar shows the crossover point, selected at random (column 3). The chromosomes are
paired at random (colr-rmn 4), and the resLtlting off.spring, including crossovers, are shown
in columns 5 and 6. The final column gives the fitness function for the new (second
generation) popr-rlation of chromosomes.

by copying each of the parents, whilc excl-ranging theil bit patterns beyoncl the crossover

point. In general, a crossovet' will occur with probability p,,,; fbr this example, we asslrme

a crossover probability p,, : 1 so that a crossover always takes place. The offspring

resulting ftom this process for this cxarnple are shown in Table 2.2.

The final stage in a genetic algorithm is to model a mutation, in which bits in the

chromosome string are randomly changed between 0 and I with probability p",,. This

mutation helps keep the algorithm fr"om converging to a local maximum in the fitness

function so that it may more readily find the global maximum. For this example, p?7,. was

chosen to be 0, so that mutations are not modeled. This set of offspring chromosomes is

then used els the initial population fbr another iteration through the algorithm. As seen in

Table 2.2, the second-generation population of chromosomes has a higher value of ./ than

the initial population (Table 2.1), so that these chromosomes indicate vadues of z which
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better maxrritze .f .

A number of variations of the basic algorithm just described may be employed. One

may, for example, allow multiple crossover points in the chromosomes, or employ eliti.sm,

in which the best one (or more) chromosomes in a population are guaranteed survival

to the next generation, while the crossovers and mutations are applied to the remaining

population.

Genetic algorithms have recently been used [26] for LEED surface structure determi-

nation of Ir(ll0)-(l x2) missing row structure, involving three independent search para-

meters. In this case, each chromosome models a single candidate structure in the space

of surface structure parameters to be searched. Since a genetic algorithm will tend to

maximize the fltness function, but we wish to minimiz.e the R-factor, the fitness function

was taken in this case to be 2- R.PE, where R.PE is the Pendry R-factor described

above. This model employed a population size of 50, with each chromosome containing

7 bits. Elitism was used to increase the algorithm's convergence speed, in which the best

five chromosomes in each population are guaranteed survival to the following generation.

In this study, a genetic algorithm was used to find the approximate location of the global

minimum R-factor, with a conventional steepest descent used to find the minimum more

accurately.



Chapter 3

Artificial Neural Networks

"Mihi contuenti semper suusit rerum nuturu nihil incredibile existimure de eu."

- Pliny the Elder, Historiu mturalis, XI, 2, 6

3.1 Introduction

T
I HE development of the electronic digital computer has been one of the landmark

achievements of twentieth century technology. It provides the physicist with a powerful

tool for solving problems whose sheer size would make them difficult or impossible to

solve otherwise.

A digital computer may be used to solve problems in several different ways. If the

solution to a problem may be determined analytically, a computer may be programmed

with instructions to carry out the numerical computations given by the solution. In many

cases, however, an analytic solution to ar problem cannot be fbund. In this case, a computer

40
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may be used to implement a search algorithm or other iterative technique to converge upon

a solution. This requires that a method for fincling the solution to the problem be described

to the computer in the form of computer codes, which the computel can then execute at

high speeds. This is the case, for example, fbr the inverse LEED 1-V problem described

in the previous chapter.

Recent years have seen the development of innovative new approaches to the solLr-

tion of such problems. In urtificul intelliganc'a, for example, one designs computer codes

which, in some sense, are able to teach themselves how to solve certain classes of prob-

lems. One of the most interesting of these artific:ial intelligence algorithms is the use of

artificial neurul netwrtrk.r, in which a computer code is designed to mimic the operation of

a biological neural network such as the human brain. This chapter will give an overview

of artificial neural networks, with particular emphasis on the backpropagation networks

that are of interest in solving the inverse LEED 1-Z problem.

3.2 Biological Neural Networks

In beginning a study of artificial neural network algorithms, it is instrr,rctive to first review

the biological neural networks after which they are patterned. This section will review the

molecular biology of biological neural networks as they occur, for example, in the human

central, peripheral, and autonomic nervous systems. An understanding of the operation

of biological neural networks will help to clarify the motivations behind several aspects

of the design of artificial neural networks, which will be of interest in solvins oroblems

in LEED.

A typical biological nerve cell, or rTeuron, is shown schematically in Figs. 3.1 and
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FigLrre 3.1: Schematic figure of a typical vertebrate neuron.
(After Alberts et al., 1994 [211.)

3.2. lts cell body consists of a lipid bilayer plasmu membrane which encloses the cell

nucleus containing most of the cell's genetic information. The remaining cell contents,

or cytoplasn, consist of a jelly-llke cytosol, in which is suspended the cell's various

organelles. These organelles include the mitochondria which produce the adenosine 5'-

triphosphate fuel used to power the cell's chemical reactions; the endoplasmic reticulum,

where protein synthesis takes place; and the Golgi apparatus, which receives lipids and

proteins from the endoplasmic reticulum and sends them to the parts of the cell where

they are needed.

Extending out fiom the neuron's cell body is one long axon, which is the path along

which an outgoing nerve impulse is sent. The axon ends in a series of terminal branches,

each of which may be used to send nerve signals to other neurons. Also attached to the

te rmina l  b ranches  o f  axon
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Figure 3.2:
(After Purves et al..  1997 [281.)

Details of nerve cell boclv.
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cell body are a set of shorter dendtrites, which act as "antennas" for receiving signals

from the axons of other neurons. The dendrites essentially increase the surface area of the

cell body, allowing the neuron to receive as many as 10r' inputs ti'om other neurons [27].

The basic mechanism by which nerve impluses are transmitted from neuron to neuron

involves gated irnt chatmels, which are pores in the plasma membrane thlough which ions

(such as K+ or Na+; may diffuse whenever the channel's gate is open. Several types of

gated ion channels exist, and are classified according to the type of stimulus which opens

them. For our purposes, the most important of these are ttoltage-giletl ion channels, in

which an electrical potential diff-erence across thc plasma membrane causes the gate to

open; and transnitter-gutetl i<n t'hururc1,r, in which a chemical called a neurotronsntitter

acts as a sort of "key" to open the gate.

A nerve impulse (or action potentiul) travels along the axon by means of voltage-gated

ion channels built into the surface of the axon. When a stimulus depolarizes the plasma

membrane enough to open a voltage-gated ion channel on the axoll, cations are allowed to

diffuse into the axon through the channel. This causes further membrane depolarization,

allowing other nearby channels to open, causing further depolarization. A separate inacti-

vating mechanism causes the channel to quickly close, while the nearby channels, having

opened slightly later, continue the process of opening their nearby channels before closing

themselves. The result is a domino-like propagation of opening and closing ion channels

along the length of the axon. Because of the self'-sustaining nature of the propagation,

this signal can travel along the axon withor,rt attenuation.

Once the action potential has reached the end of one of the axon's terminal branches

(at a junction called the synapse), the electrical potential triggers the release of neuro-

transmitters, which are stored in membrane-bounded synaptic vesicles near the end of the
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terminal branch. These neurotransmitters pass through the plasma membrane across a

gap called the synaptic cleft which physically and electrically separates the axon from its

neighboring neuron. The neurotransmitters act like "keys" which open transmitter-gated

ion channels on the neighboring neuron, allowing cations to enter the cell body of that

neuron. Once enough of these transmitter-gated ion channels have opened, the plasma

membrane of this neighboring neuron will become sufficiently depolari zed. to activerte an

action potential along its own axon, and the whole process begins again in the neighboring

neuron.

Several key featr"rres in this description of biological neurons arc important to note,

as they are incorporated into the design of artiflcial neural networks. First, each neuron

may be connected to many other neurons through the terminal branches at the end of

the axons. Second, an action potential in a neuron is triggered only after input stimuli

from neighboring input neurons havc exceeded a certain threshold. Third, once an action

potential has been activated, further input fiom neighboring neurons has no effect. The

input has been essentially saturated with inputs fiom neighboring neurons once the inputs

have exceed the level to trigger an action potential.

3.3 Artificial Neural Networks

Artificial neural network.s are algorithms that attempt to mimic, in a simplified fashion,

the behavior o1'networks of the biological neurons described above. They are of interest

to neurobiologists as a simple model of the human brain; understanding the ways in which

neural networks learn to recognize patterns may provide some insight into human learning

and behavior. Artificial neural networks are also of more general interest as a problem-
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solving tool: since they are particularly adept at pattern recognition, they may be useful

in solving certain types of problems which are intractable by traditional methods. It is

this latter use of networks that will be of interest here.

Many diff'erent types of neural network algorithms have been developed since they

were first conceived in the 1940s. In general, an artificial neural network consists of

a set of nodes, each of which contains a numerical value. The nodes are connected

to each other through a series of directed lines (as shown in Fig. 3.4). each of which

carries an associated value calied a weight, . Since the connecting lines are directional,

each node will generally have several input connections and several output connections.

A node's value will be a function of the values of the nodes which f-eed in to it, the

weights associated with the corresponding input connections, aud an uctittation.function

which limits a nodes value to a restricted range. The nodes are meant to be analogous

to the neurons of a biological neural network: the interconnections are analogous to the

biological axons and synapses; and the activation function models the saturation of a

neuron by signals from input neurons.

Using an artificial neural network typically begins by setting the values of a set of

input node.s to describe the problem to be solved. One then calculates the values of all

the other nodes in the network, and finally reads out the values of a .set of otttpttt nodes

which de.scribe the solution to the problem. 'Ihe network's ability to solve the problem

being asked of it is determined by the network's weights, which may be deterrninined by

several different methods. Most often this involves what is called supervised leuming, in

which the network is shown a series of example inputs. The network calculates the output

node values for these examples, and sone means is used to adjust the network weights

for the error between the network's results and the expected results. This process (called
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training) is repeated over many iterations until the network weights have converged and

the output nodes are able to produce the correct output nodes values for each of the

examples on which it is being trained.

Another means of determining the network weights is unsupervised lectrning, in which

the network trains itself by setting its own weights without having to be shown examples.

In this case, the network will only be able to group similar inputs together and decide

which group a given input is most similar to. Network weights may also be fixed; this

type of network may be useful in solving constrained optimization problems, where the

network weights represent the constraints in the problem

3.3.1 Examples of Artificial Neural Networks

How artificial neural networks are used in practice might best be illustrated by describing

a few examples. One typical examplc is the design of a network to recognize letters of

the alphabet 1291. Each letter may be encoded on a grid, as shown in Fig. 3.3; the value

of each point in the grid ( I for "occupied" or 1 fbr "unoccupied") is then fed to the

network at its input nodes. There may then be one output node for each possible letter,

with an output value of I in an output node indicating the presence of the corresponding

letter. Using supervised learning, such a network can be trained to recognize the letters on

which it was trained-not only in their original form, but also with significant deviations

from the original forms. This makes it possible for such a network to recognize human

handwriting with remarkable accuracy.

Other uses for neural networks include speech recognition and production, medical

diagnosis, and signal processing. Recent attempts have also been made to use neural
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Figure 3.3: Encoding of letters for character recognition.

networks in finance, in an attempt to fbrecast stock and commodity prices. The success

of such financial applications, however, is limited by the nature of the financial markets:

if a network is ever developed that can successfully forecast stock or commodity prices, it

would quickly become so widely used that it would no longer work. One must be careful,

therefore, to ensure that the use of a neural network is appropriate lor the problem at

hand.

3.4 Backpropagation Networks

One of the most commonly used neural networks, and the type used in this work, is

a backpropagation network. A backpropagation network consists of a set (or layer) of

input nodes, one or more layers of hidden (or mediul) nodes, and a layer of output nodes,

as shown in Fig. 3.4. Data propagates through the network in one direction: from the

input layer to the hidden layer to the output layer, through a series of connections that

join each node in a layer to each of the nodes in the layer below it (in an arrangement

known in graph theory as a complete bipartite graph t30l). It has been shown [29] Ihat

a single layer of hidden nodes is sufficient to approximate any continuous function of the
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Input Layer

Hidden, layer

Output Lager

Figure 3.4: An artificial neural network.

input nodes, although in some circumstances the network may train more easily with two

hidden layers. The network used fbr the research described in this work uses a single

layer of hidden nodes.

Each connection between two nodes of a backpropagation network has an associated

weight, which determines the fraction of a node's signal that will be received by a node

in the layer below it. The set of all the network's weights determines the values of the

output nodes for a given set of values in the input nodes. Specifically, suppose that there

are 1 nodes in the input layer with values :xi, J nodes in the hidden layer with values

zi, and 1( nodes in the output layer with values 96. Then the values of the hidden layer

nodes in a simple network are found liom the inpr-rt node values from [29]

z j :  f ( ' ' r r+* ' , ' ' , r ) (3 .  1 )
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where uii is Ihe weight associated with the connection between node z, of the input layer

and node .7 of the hidden layer. The weight u6i is called a bias weight, and serves to bias

the node inputs into the correct range for the activation function .f (r) t3ll. The function

f (r) in Eq.(3.1) (called an activation.function or sigmoid.function) limits the value of

its argument to a finite range, in analogy with the saturation of a biological synapse. For

this work, the activation function has been chosen to be

1
f  t - \  _

, t \ , . t  1 r - _ . r r
(3.2)

r ?  ? )

to l imit the weights to the range [0,1], as shown in Fig. 3.5.

Having found the hidden node values zi, the values 'ua of the output layer nodes are

given by

where ?oir is the weight associated with thc connection between node .7 of the hidden

layer and node k of the output layer, with rr.r1;1. being the bias weight.

3.5 Scaling

The performance of a backpropagation network may be improved by ensuring that the

values of the output nodes fall within the linear range of the activation function, This

may be accomplished by scaling the output values. If y is a network output node value

calculated by Eq. (3.3), then it may be scaled to within the linear range of the activation

function by applying [32]

lJ  -  !1 , , , i , ,
9sr;a lecl  (St t ,o"  -  St t i tJ  t  Srnrn r

a t  -  1 t
y l l r a x  , ' , / n l i l l

(3.4)
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Activation function f(x) - 1l(1+e-")

x
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X

Figure 3.5: Activation function f (r) :1lQ I e- ').
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where qmax and !,,;, ore the maximum and minimum expected unscaled output values

and snrax and s,,,1,., are the maximum and minimum desired scaled values. Typically one

chooses srnax:0.9 and s,nin:0.1 for the activation function given by Eq. (3.2).

In addition to placing the network outpr,rts in the linear range of the activation func-

tion, scaling has the additional advantage of rendering the network outputs dimensionless

by cancelling any units that may be associated with the outputs. This allows different

quantities, such as compositions (in percent) and interlayer spacings (in angstroms) to be

on an equal footing for error backpropagation.

Similar scaling of the inputs is not required, since any such scaling wor-rld simply be

absorbed by the weights in the connections between the input and hidden nodes [32].

3.6 Learning

Equations (3.1-3.3) are the basic equations flor the .fbedforwurd phase of running the

network. In this phase, the input nodes eu'e set to the desired input values, the network

node values elre computed. and the output nocle values give the result for the given weights.

The next phase in running the network is the backpropagation phase, in which the

network weights 'ui.i and ui*: dre ad.iusted to correct fbr the error at the output nodes. To

find the amount by which the network weights should be adjusted, we begin by writing

an expression for the mean squared error in the network oLrtput [32]:

- L  r - N  p K  (  , , .  -  t .  \ 2
' . t  1 ' 1 1  - !  1 - A ' : l  \ : l A ' t L  t  A ' t t  I

u f  ( ) r ; r l  -  
l {  K

(3.s)

where .A/ is the number of tlaining examples available to train the network, K is the number

of output nodes, 3/r.,, is the frtl' scaled network output for the n'l' training example, and
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trr,. is the kl,l ' scaled target (i.e. "correct") output for the ntl' training example'

3.6.1 Error Derivatives for Hidden-to-output weights

we begin by examining the weiglits ?l)lr, between the hidden ancl output nodes' These

weights may be adir-rstecl using a graclient clescent method, which will require that we find

the derivative of the error with respect to the weights. Writing the squared error for one

output node as -8, we have

g : i('v^, 
- tu)'t (3'6)

Using the chain rule, we diff'erentiate E with respect to the weight t,1).ia iIS

0E _ 
0E dYt' drl* 

G.1)
}'Lr; it 0Yu 0rlu thrt;r;

Here r7p is the quantitY
. I

' r l t :  :- ' t t)ot\t  +\ z' iut ix (3'8)

from Eq. (3.3). The first factor on the right of Eq. (3'7) is found by simply diffbrentiating

Eq. (3.6), so that

AE  ,  ( 39 \
/1h: ' ! /x '  

-  tx '  \ -  "  /

To compute the second factor on the riglrt of Eq. (3.7), we note that from Eqs' (3.3) and

(3 .8 ) ,

!)^, - .f (ril.) (3' 10)

Then

*!t -- f,(,tu)
orlt

( 3 .  I  l )
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Using Eq. (3.2) for ./, we find

(.. t'

t ' t  t  
" \J  \ . t t  

( l _ ,  
, ) ,

I  e - t ' (3. t2)
l * r : - ' '  1 *e - ' '

Now note that from Eq'(3.2) that

(3 .13)
I l r ' .  " '

From Eqs.  (3 .12)  and (3.13)  we see thet t

r ' t t , . \  
I  (  '

. t  \ . , t  
i  r (  . r .  l + ( . . r

. f  ( r ; )  [1  -  . / ( ' ) ]  .  (3 '14)

Eq.(3.11)  is  then fbunct  us ing Eqs.  (3 .10)  and (3.14)  to  g ive

!U!. f'?t,,)o''l^' 
: ./(,r^,) [1 - .1.(,t^,)]

' ! /x, (1 - qs) (3' 15)

Finally, the third factor on the right of Eq. (3.7) is found by differentiating r7p with respect

to the weight ttr,ir,. Since

' t lA' : ' tt)ok trl 2.1'ttsl*, ,
i - l

we find

o, , to  [ t  i r  i :o ,
au, r - \ " ,  

i f  7>0 .

( 3 .16 )
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If we define 'pk to be the filst two factors in the error derivative (3.7),

p*,=9 AL .
0u,,, hno ' 

(3'17)

then Eqs. (3.9) and (3.1-5) give

P k  ( 1 l k  -  t t , ) Y n  ( 1  -  g r )  . (3 .  r8)

The error derivative of Eq. (3.7) may then be written by combining Eqs. (3.16) and (3.18)

to sive

aE -lav, 
I

'Pt; if "'j 
- 0 ,

'pk z.j if .i > 0

(3 .1e)

Eq.(3.19) gives the change in the netwot 'k output error E fol  a given change in the

hidden-to-output weigltts rlir,,.

3.6.2 Error Derivatives for Input-to-Hidden Weights

Having found the clerivatives of the or"rtput node errors E with respect to the hidden-to-

output nodes weights 'rriA, we now find the derivatives with respect to the inpLrt-to-hidden

weights r.r;i. From the output node errors given by Eq. (3.6)

E :  + ( y , , . -  t ^ , ) t  1

we find the derivative with respect to the weights u;i using the chain rule, as before:

AE AE 0"i )e:i
^ (3'20)
6u;j d2.,1 )ei 0u;,1



56

where (i is the quantity

I

( .1 i  : ' u11 i  * l t : ; t t ; . i  Q .zL)
' t - I

from Eq. (3.1). We begin with the first factor on the right of Eq. (3.20). From the analysis

of the proceeding section (Eqs. (3.9) and (3.1-5)) we can write

AE '!/x, tA, , G.22)
dllt'

dYt"

0,117, 
'!Jk' 

l1 
'!/A,) (3'23)

Then the product of the first two f'actors in Eq. (3.20) is

dE d'tt,.-  -  - ; 'A  (  t r 1  / r  )  l l *  ( 1  -  l t t , )  -  l , *  0 .24 \t)tt^. t)r!s. \"'

from Eq. (3.17). We then have

i-)E A .\
\ -  , , , .  

t " i ^  
/ l  7 5 \

i ) - i  ? , ' ^  d . . ,  
\ " - ' '

Using Eq. (3.8) forr11,,

' t lk - ' t t tot. - l \zi ' tu.1x , Q.26)
j - l

we find

i )'r11;

,;, 
- 'tu jA G'27)

Then the first factor on the right of Eq. (3.20) may be written

OE Ii

Aq 
-'I Pu 'IL)'jk (3.28)

To find the second factor on the right of Eq. (3.20), we note that

z; : .f ((';) (3.2e)
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from Eqs. (3.1) and

write

I1'we define

then the error derivative

T
1 ' . - , 1 . . .  | \ - ' . , , . .
\ /  ' t t l  '  

1 J ' t 1 t ' . 1
t l

I
I

I: ;.

i f  i , : 0  ,

i l '  , >0

z.,i \7 - 2.,1) ,

n weights (Eq. (3.20))can be wri t ten

(3.21). Then, using the results from the prevlolls sectlon. we may

: .l'' (C,i)

-  /(C) [1 . f  (Ci))

-  , . ( 1  -  r . \' . 1  \ '  " . J  I (3.30)

Using Eq. (3.21) for  (7,

(3 .3  r )

Finally, we find the third lactor on the right of Eq. (3.20).

have for the third lactor on the right o1'Eq. (3.20)

oz.,i
0Ct

/ l r '  \

(I l 'u "' i^ )

npr"rt-to-hidde

dC.i 
:

dtt.; i
(3.32)

(3.34)

Q.:i =

tbr the i

3.7 Learning Algorithms

Eqs. (3.19) and (3.34) give the derivatives of the network error -D with respect to the

hidden-to-output weights tuir and the input-to-hidden weightS u;i, respectively. These

i f  i , : 0  ,

i f  , i , >0

(1.:i

{1,1 :r: ;

,o - [Ar,, 
I
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error derivatives may be used to determine the amounts by which the network weights

should be changed, given the network output errors. Let u.,,, be a network weight (either

uii ot w.1t) at training epoch rn,, and r1,,,,. be the sum over all l/ training examples of the

derivatives of the network output errors E- with respect to the weights:

t  $at
" l t t  

fr ,  dr,,r , ,
( ?  1 5 )

where the derivatives will be given by Eq.(3.19) or (3.34). At training epoch m,, we wish

to adjust the weight tt,,,by some amount {:,,,., so that

? l , n t  - ' l l t t t  
I  I  { : , , , , . ,

where c,,, will depend in some way on the error derivativc d,,,.

(3.36)

3.7.1 Constant Learning Rate

The simplest learning algorithm is one in which the change in the network weight is

proportional to the error derivative [32]:

{ : r r r ,  :  -€ d ' r r r .  , (3.31)

where e is a constant called tlte leanting rute. This algorithrn is compr-rtationally fast, bLrt

may not work well with a complicated error surf-ace such as those encountered in LEED

problems. If e is chosen to be too large, then the network weights will be adjusted in

large increments-perhaps too large to find the global mininum of the en'or surface being

searched. [f e is chosen to be too small, the network may require an excessive number of

training epochs to converge.
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3.7.2 Momentum

One method of improving the convergence speed of a network over that of a constant

learning rate is the use of momentum, which will give the network the ability to adjust

its weights preferentially in the direction in which they have been changing previously.

A learning algorithm employing momentum will update the network weights at epoch m.

according to [32|

ctrr. :  l l ,crn r - (1 - p) € d,,u. , (3.38)

where p is a momentLrm parameter (0 ! 1; < 1). Larger values of 1r will cause the

weight changes to be more influenced by previous values of the weight changes; a value

of  1 t  :0 .9 is  typ ica l .

Momenturn is generally not neecled if the network is trained by batch learning [32]

(described below). Since batch learning was used fbr network training throughout this

Dissertation, momentum was effectively disabled by setting p":0.

3.7.3 Adaptive Learning Rates

Yet another method of improving the network's convergence speed is to use adaptive

learning rutes rn which the network weights are updated in larger or smaller increments

depending on whether recent updates have been in the same direction or in opposite

directions. One begins by writing an exponential average J,,. of the error derivative d-,

1321,

.fnt+r - 0 .f,,, + (I - 0) d,,,, I ( 1  1 g \
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where the parameter d (0 < 0 < 1) determines how rnuch weight is assigned to the past

values of the error derivatives; the larger the value of 0, the more weight is assigned to

past values of the error derivatives and less weight to the current value. Typically one

maychoose0 :0 .7 .

Then the change to the network weights is given by

(')"' - -(' '"' 'd'"' '

where er, is the learning rate, which is computed from

(3.40)

( l t t r :

(''rr,, 1 * h'' if (1,,,.f r,, > 0 ,

if d,,,,..fr,,, < o

(3 .41 ;

Here r, and 11; are parameters that may be used to adjust the adaptive learning rate. If

d,-.f-, > 0, then the network weight is currently changing in the same direction as it

has been in the past; in this case, it is desirable to make relatively large changes in the

network weight by incrementing the learning by the parameter n'- If t1,,,,.f ,,,. ( 0, then the

network updates have changed sign, and it is desirable to make smailer changes in the

weight by multiplying the previous learning rate by the parameter r/ (0 < O < 1). Note

that this adaptive learning technique requires that a separate learning rate be maintained

fbr each network weight, increasing the computer memory requirements.

Typical ly one may choose n,:0.1 and r/:0.5, although it  may be necessary to scale

the parameter n to the number of training examples if batch training is being used, its

described shortly.

One may use both momentum and adaptive learning rates by replacing Eq. (3.40) with

( ' , , ,  l !  ( ' ,n  ,  ( l  -  
1 . t )  en,  t l  , , , (3.42)
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Since momentum was disabled in the Dissertation work in favor of batch learning, the

momentum parameter l/ was set to 0.

3.8 Weight Initialization

In order to begin network training, one must begin with some initial values for the network

weights which can be later ardjusted by the learning algorithms. The usual practice is to

init ial ize the network weights to small random values [29,31]. Small init ial weights are

chosen in order to prevent premature saturation of the network nodes; the initial weights

are chosen to be randont as a symmetry-breaking device, in order to keep different weights

from performing the same function in the network and thus becoming redundant [33].

It has also been suggested [32] that half of the hidden-to-output node weights rr;6 be

initialized to *1 and the other half to -1 in order to improve convel'gence speed, but this

technique did not seem to work well for the LEED problems being investigated here.

3.9 Batch Learning

When training the network, one may adjust the network weights after showing the network

each example in the training data set. This approach, however, tends to bias the network

weights; once the training is finished, the network will tend to best model the last example

it was shown.

This difficLrlty may be avoided by training the network by batch learning, in which the

network is shown ctll examples in the data set, one by one, without erdjusting the network

weights, but accumulating the total error. The weights are then adjusted according to the
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total (net) errors found after all examples have been shown to the network. Batch learnins

was used for all network training throughout this Dissertation.

When using batch learning with an adaptive learning rate, it may be necessary to scale

the learning parameter x; to the number of examples in the training set if a large number

of examples is used. This was for-rnd to bc the case during the course of this Dissertation,

when the network trainir-rg dLrring the investigations of Chapter 6 required decreasing n

to prevent the network from diverging for large numbers of training examples.



Chapter 4

Development of Artificial Neural
Networks for LEED Surface Structure
Determination

"Naturu muteriue doctrinue est; huec .f'ingit, il.lu.f'ingitur."

- Quintilian, Institutio ortfioriu, xix, -l

A, Otr.ussed earlier, one of the main computational difliculties encountered in the

interpretation of experimental LEED data is the difficulty of inverting the dynamical LEED

calculations; i.e. determining the arrangement of atoms near the crystal surface given the

experimental I-V curves. This chapter describes the author's research in developing an

artifical neural network capable of identifying a surface structure that corresponds to a

given LEED I-V curve.

The general approach to using a neural network to solve the inverse LEED search

problem is to use standard computer codes Il] to perform the LEED dynamical calcu-

lations that generate predicted I-V curves for a variety of candidate surface structures.

63



64

These curves are then used as training data on which to train the neural network. Once

the network is trained, it is given an experimental I-V curve and asked to identify the

surface structure parameters (atomic compositions and interlayer spacings).

This chapter will describe the computer codes developed by the author to implement

such a neural network, as well as the initial functional and performance testing of the

network.

4.1 Network Program Design

The neural network developed here for LEED surface structure determination was imple-

mented as a computer program written in standard ANSI C and run on a Silicon Graphics

computer with a UNIX operating system. C was chosen as the language of implementation

because it is widely used, highly portable, and well suited fbr the pro.ject at hand.

The neural network program developed {br this Dissertation, called LEEDNET, imple-

ments a backpropagation algorithm as described in Chapter 3. LEEDNET is a text-based

program with a command-line interface. Commands may be entered into the program

either interactively or as scripting files; the latter feature allows the program to be run as

a batch job when large amounts of computing time are required. Commands are included

to train, run, and test the network, format the data in the training file, adjust the network

learning parameters, save and load network weights, etc. The complete set of commands

is described in Appendix A (the LEEDNET User's Guide), which also includes general

instructions for use of the program and a description of the LEEDNET input data format.

A listing of the complete LEEDNET program is given in Appendices B-E.

The LEEDNET backpropagation algorithm includes adjustable adaptive learning rates
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Network k Error (7o)
'A - stnr

?/ : sin2r

1.000000
2.000000

0.00
0.00

Table 4.1: Network recognition of U : sin k:r for k - 1,2.
The network was trained for 100 training epochs using 640 input nodes, 40 hidden nodes,
and 1 output node, and using adaptive learning.

with an optional momentum term, each of which may be enabled or disabled as desired.

The program is designed to train the network by batch learning (described in Chapter 3)

to prevent biasing the network weights in favor of the last example it was shown.

4.2 Initial Testing

Once a basic version of the program had been written, it was initially tested by checking

its ability to distinguish two different patterns with a single varying p:lrameter. The two

functions .? - sin:r and 'll : sin 2r tor were chosen as the test patterns because of their

simplicity and their similarity to the LEED 1-7 curves which would ultimately be used.

A data set was created containing both functions sampled at 640 equally-spaced values of

r for r e l0,2ir), and this data set was used to train the network. Once trained on both

patterns, the network was shown each of the patterns individually and asked to identify

the parameter k in g: sinkz. The results, shown in Table 4.1, show that the network

was able to identify A; perfectly to seven significant digits after just 100 training epochs.

The next phase of the initial testing was to check the network's ability to recognize a
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Expected 4 Network A Error (7o)

A - strtr

?J - 2sinr

r .016348
r.984289

1 .63
0.79

Table 4.2: Network recognit ion of U - Asin:r for A:7,2.
The network was trained for 500 training epochs using 640 input nodes, 40 hidden nodes,
and I output node, and using adaptive learning.

different parameter, the amplitude of a sinusoidal pattern. Two sinusoidal patterns were

created, again with a single adjustable parameter: J/ : sitrr and '!J :2sinr, using 640

equally-spaced points for :r € l},2trl. These patterns were used to train the network

for 500 epochs, and the network was then tested by showing it the individual training

patterns and asking it to identify the amplitude. The results are shown in Table 4.2,

and show that the network was able to successfully identify the sinusoidal amplitudes

as well. The results are not as dramatic as in the previous test, however; the network

was found to be somewhat less adept at recognizing sinusoidal amplitudes than it was at

identifying frequencies. Training required -500 epochs rather than 100 befbre the training

error reached its lowest value, and the independent test results show larger errors.

The network's greater ease in recognizing sinusoidal frequencies is of benefit to the

use of networks in LEED structural analysis, since it is generally regarded [ ], 34] that

peak positions in I-V curves are of greater importance than the magnitudes of the peaks.

Having passed these simple tests with just two training examples, the network was

next tested for its ability to recognize several different values of sinusoidal frequencies.

For this test, the training data consisted of the pattern g : sin A,r for a single varying
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Pattern

I -- siu z.'
'!J : sin2r

i9 : sin 3r

lJ -- sin 4r

9 :  s i n5z

1.000000
2.000000
3.000000
4.000000
5.000000

I
2
a-)
4
5

Network k Error (Vo)
0.00
0.00
0.00
0.00
0.00

Table 4.3:  Network recogni t ion o1 ' .1 / :  s in  kr  for  k :  I ,2 ,3,4,5.
The network was trained for 160 training epochs using 640 input nodes,40 hidden nodes,
and I output node, and using adaptive learning.

parameter l ,  :  1,2,3,4,5 and 640 equally-spaced values of : ;  fbr r € 10,27T). After

training for 160 epochs, the network was shown each of the five patterns individually and

asked to identify the frequency. The results, shown in Table 4.3, show that the network

was able to recognize the sinusoidal lr'equencies perfectly to .seven .significant digits after

. iust 160 training epochs.

A similar test was performed to check the network's ability to recognize several values

of the sinusoidal amplitude. The patterr"t,!J - Asitr was used to generate training data

for the single varying parameter A : r,2,3, using 640 equally-spaced values of r fbr

r e 10,2r). The results of showing the trained network each of the three individual

patterns (Table 4.4) show that the network was successfully able to identify A in each

case, although more trainining epochs were required than for the frequencies, and the

errors were larger (although still quite small).

The final phase of this initial testing was to test the network's ability to,simultaneously

recognize both the frequencies and amplitudes of a sinusoidal pattern. Trainins data
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Expected A Network,4 Error (%)
9  -  s ln r
' ! /  :2s inr

9 :3s i n r

0.999996
2.000007
2.999994

0.0004
0.0004
0.0002

Table 4.4: Network recognit ion of l l  -  Asinr for A:1.,2,3.
The network was trained fbr 2000 training epochs using 640 input nodes, 40 hidden nodes,
and I output node, and using adaptive learning.

was generated of the lbrm ?/ - AsinAr, with two varying parameters, A - 1,2,3 and

k: 7,2,3,4,5, and Lrsing 640 equally-spaced values of z for r e 10,27T). After the

network was trained fbr 2000 epochs it was shown each of the indiviclual sinusoidal

patterns and asked to identify both the arnplitLrde and frequency. The results are shown

in Table 4.5, and demonstrate that the network was able to successfully identify both

parameters simultaneously in each case, to within a small error.

4.2.1 Adjustment of Network Parameters

The data sets used fbr the initial network testing included 640 data points fbr each training

pattern, since this was the number of data points available for the I-V data to be used

later. This allowed the network parameters (such as the adaptive learning rate constants

and number of nodes in the hidden layer) to be adjusted fbr a data set of the same size

as the LEED 1-7 data set.

This initial testing of the network provided an opportlrnity to evaluate the perfbrmance

of different learning algorithms and parameters. The use of an adaptive learning rate was
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Pattern Expected Network Exoected Network

lJ : sitt t:
'!/ : sitt2:r

I  -  s in3r
'!J : sitt 4t:

lJ 
-- sitt bt:

! /  :2s i l t :

Y - 2 s i n 2 r
' ! l  :2sirr3:r

l J - 2 s i n 4 : r
l J - 2 s i n 5 : r
I  -  3  s in : r

ll : il sirr 2z

Y - 3 s i n 3 : r
lJ - 3sirr4t:
' ! J - 3 s i r t 5 : r

r  .003 167
0.999s19
0.993953
0.999710
1.002643
1.998000
2.000191
2.004977
2.000t24
t.998523
3.000749
2.999926
2.996818
2.999931
3.000614

1 .001520
|.999990
2.9998t9
4.000034
4.998514
0.996934
1.999989
3.OOOO42
3.9999t1
5 .003198
I  .001694
t .99991|
2.999903
4.000066
4.998t62

Error (7o)
AK

o.3n  0 .152
0.042 0.001
0.605 0.006
0.023 0.001
0.264 0.030
0.100 0 .307
0.0r0  0 .001
0.249 0.001
0.006 0.002
0.074 0.064
0.025 0.  169
0.002 0.001
0. r 04 0.003
0.002 0.002
0.020 0.037

I
I
I
I
I
2
2
2
2
z

.J
a--)
a-)
3
3

I

2
--)
A
a

-5
l
2
3
4
5
I
2
-1
A+

5

Table 4.5:  Network recogni t ion of  l /  :  s in fu: r  for  A :  1 ,2,3 and A;  -  1 ,2,3,4,5.
The network was trained for 2000 training epochs using 640 input nodes, 40 hidden nodes,
and 2 output nodes, and using adaptive learning.
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found to significantly increase the convergence speed of the network. Here the learning

rate e-. at epoch rn in the training is taken to be

(4 .1 )

To demonstrate the effectiveness of an adaptive learning rate, the network was trained

on problems in the previous section involving the determination of two parameters of a

sinusoidal pattern (Table 4.5), both with and without an adaptive learning rate. Figure (4.l)

shows the network test error as a function of the number of training epochs in each case,

and clearly shows the improvement gained by the use of adaptive learning in the network.

The adaptive learning case used the learning rate panrmters H-. - 0.1 and Q:0.5, while

the non-adaptive case used the constant learning rate e - 0.1.

Figure 4.2 shows a similar case in which the same problem was run with adaptive

learning, but for cases both with and without a learning momentum term. The inclusion

of momentum in updating the network weights, which biases weight changes in favor

of continuing in the same direction, did not appear to significantly affect the network

convergence and was not further used in the work lbr this Dissertation.

Another important network parameter to be adiusted is the number of nodes in the

network's hidden layer. Neural network theory is not sufficiently developed to erllow an

a priori determination of the number of nodes in the hidden layer for a given problem

132,311; instead, this number must be adjusted by trial and error. Using too few nodes in

the hidden layer will not provide enough weights to fit the training data, and the network

will not converge. Using too many nodes in the hidden layer, on the other hand, may

result in overfitting of the data and greatly increasing the training time and computer

(

-. _ l?,n t + R, for weights changing in the same direction,
t ' n t  

)

[",,, r \ y'r fbr weights changing direction.
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Figure 4.1: Network error vs. training epoch, with and without adaptive learning rate.
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Effect of Momentum Term with Adaptive Learning
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Figure 4.2: Network error vs. training epoch, with and without momentum term.
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Hidden
nodes

2
5
t0
40
r00
s00

Network
amplitude, -4

2.070583
2.999886
3.000173
3.0000s 1
3.000237
2.999259

2.083956
2.000164
2.000146
1.999991
1.999952
r .999859

Error (o/o)

AK,
30.98 4.20

0.0038 0.0082
0.0058 0.0073
0.00l7 0.0005
0.0079 0.0024
o.o24l 0.0071

Table 4.6: Network recognition of .!/ : ilsin 2z with different numbers of hidden nocjes.
The network should l'eturn A : ll and A: - '2 in each case. The network was trained
for 2000 training epochs using 640 input nodes and I outpLrt nocle, and ursing adaptive
learning. Note particularly the clifficLrlty the network has in ic'lentifying the amplitude ,4
when using only 2 hidden nocles.

memory requlrements. By experimenting with diff-erent numbers of nodes in the hidden

layer, one rnay dcvelop a network which flts the training data well enough to generalize

the training data without overfitting.

A .simple exatnple may help to illustrate the problem.s encountered when one uses too

few hidden nodes in the network. In Table 4.6, the function ,!/._ iJsjn2:r was u.sed to

train a network using several different sizes of hidden layers. The resr-rlts show that the

network had difllculty in identifying the amplitude of the pattern on which it was trained

when only two hidden nodes wet'e used. The problern clid not occur whcn more than five

hidden nodes were used.

Throughout this Dissertation, 30 or 40 nodes were generally Lrsecl in the hidden layer

with acceptable results. Convergence of the network was generally unaffected by small

changes in the number of hidden nocles, so the exact value of this number was not found

Network
frequency, k
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to be critical.

4.3 Training with Calculated I-V Data

The initial testing of the network showed that it was able to correctly iclentify a variety

of sinusoidal functions. The next step in testing the network was to train it with actual

dynamically calculated LEED 1-7 spectra, calculated by standard computer codes [11].

The calculated training data was fbr the (100) surface of a Ni56Pd5,6 alloy, for which

calculated and experimental data was available from an earlier study on surface segregation

t341. The data was calculated fbr normal incidence and included (00), (10), ( l l ) ,  and

(20) beams fbr energies between 30 ancl 348 eV at intervals of 2 eV. The calculatecl data

therefore includes 160 data points in each of its for"rr beams, for a total of 640 data points

in each structures. I-V data were calculated for 180 different structures, with the top

layer compositions C1 ranging fiorn 0 to 5O7o nickel, the second layer compositions C2

ranging from 50 to l00o/o nickel, and the third layer compositions Cr ranging I'rom 30

to JOVo nickel, all at l0olo intervals. For all the calculated data, the interatomic layer

spacings were helcl constant at the bulk layer spacing of 1.87 A.

The I-V curves were entered into the input nodes of the network by assigning one input

node to each enetgy point, so that 160 input nodes were used for each beam. The four

beams were concatenated, so that a total of 640 input nodes were used for the network.

Fig. 4.3 shows schematically how the I-V intensities are entered into the network.

The first test of the network using calculated I-V curves involved training the network

on six dilferent spectra which differed only in the atomic compositions (percent nickel) in

the top layer, with the second and third layer compositions and surface interlayer spacings
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Input layer

Hidd,en lager

Output layer

Figure 4.3: Input of I-V data to a backpropagation network.
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Training data (7oNi)
C1 C2 Ct

Network results (%Ni)
C1 C2 Ct

l  . 109107 80.008560 50.000000
9.091336 19.988816 49.999996
t9.330611 79.995150 50.000000
30.4n045 80.004921 50.000004
40.831749 80.00-s630 50.000004
4L).409551 19.996188 50.000000

080
l0 80
20 80
30 80
40 80
50 80

50
50
-)u
50
50
50

Table 4.7: Network recognition o1-Nii,0Pd50(100) 1-ycurves for six diff-erent top layer
compositions.
The network was trained on all of the structures shown, and was then shown each structure
individually and asked to identify the composition (%Ni) in each layer. Training was for
2000 epochs.

being held fixed. This approach was chosen because changes in the top layer compositions

would result in large changes in the calculated .I-7 spectra, which would facilitate the

network's ability to distinguish the six patterns. Once the network was trained on these

six patterns, it was shown each of the patterns individually. The results are shown in

Table 4.J, and show that the network was successfr-rlly able to identify the top layer

compositions to within a small error.

The next stage of testing was to check the network's ability to identif y surf ace structure

parameters from 1-7 curves on which it had not been trained. That is, the test checked

the network's ability to "interpolate" between I-V patterns on which it had been trained

in order to identify a surface structure parameter.

For this test, the network was trained on the 1-7 curves of five surface structures,

with 0, 10, 20,40, and 507o nickel in the top atomic layer. The second layer was held at
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a constant 80% nickel and the third layer at 507o nickel for all structures. The interatomic

layer spacings were held at the bulk layer spacing value of 1.87 A for all layers for each

structure. The network was trained on the 1-7 curves for these five structures for 2000

training epochs.

After the training was complete, the network was shown a calculated I-V curve on

which it had not been trained: 307a nickel in the top atomic layer. When shown this

I-V curve and asked to identify the composition of the top atomic layer, the network

returned a result of 30.6857o nickel, in close agreement with the expected result of 3OVo.

The full results, shown in Table 4.8, shclw that the network was also able to recognize

the compositions of all three top atomic layers for the training data as well as for the

C t : 30"/o nickel case.

A similar test was performed in which only the second layer composition was varied.

The structures shown in Table 4.9 were used to train the network in which the second

layer composition varied between -50 ancl 100% Ni. Once training was complete, each of

the individual spectra was shown to the network, and the network asked to identify the

compositions in each of the top three atornic layers. As shown in Table 4.9, the network

was able to successfully recognize the sccond layer cor-upositions to within a few tenths

of a percent error.

As had been done with the top layer compositions, the network was then trained

on five of these six structures, with the 30-80-50 %Ni structure having been left out.

After training the network fbr 2000 epochs, it was shown all six structures (including

the one on which it had not been trained) and asked to identify the compositions of all

three top atomic layers. The results are shown in Table 4.10, and show that the network

was successfully able to identify the compositions of all atomic layers for all structures,
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0.980522 19.996605 50.000000
e. 195305 19.991948 50.000000
19.588572 80.008736 50.000004
30.685244 80.013229 50.000004
4t.ooo332 80.006714 50.000000
49.421 132 19.991333 50.000000

Table 4.8: Network recognition of Ni50Pd..,0(100) I-V clrrves for.six different top layer
compositions. having trained on five.
The network was trained on all of the structures shown except for the Ct : 30% Ni
case (indicated by a 'r'). The network was then shown each structure individually and
asked to identify the composition (7oNi) in each layer. Note that the network was able to
successfully determine the compositions of all three layers fbr the case on which it was
not trained. Training was for 2000 epochs.

08050
10 80 50
20 80 50

+308050
40 80 50
50 80 50

Tra in ing  da ta  (7aNi )

C1 C2 Ct

Tru in ing  da la  (%Ni )

ct c2 ct

Network results (7oNi)
C1 C2 C3

Nctwork results (7oNi)
C2 C:r

30.017 r66 49.524879 50.000000
30.001994 59.604801 -50.000004
30.001333 10.462921 -50.000004
29.1)96191 81.179116,50.000000
29.1)92945 90.609215 50.000000
29.989897 98.050400 49.999996

Table 4.9: Network recognition of Ni50Pdr,0( 100) I-V curves fbr six different second layer
compositions.
The network was trained on all of the structures shown, and was then shown each structure
individually and asked to identify the composition (7oNi) in each layer. Training was for
2000 epochs.

30 50 50
30 60 50
30 10 50
30 80 50
30 90 50
30 r00 50



19

Tra in ing  da ta  (%Ni )

Cr C2 C3
Network results (7oNi)

C1 C2 C3
30.001 r01 49.681546 50.000004
29.995325 59.1 199t3 50.00001 I
29.990582 10.63r752 50.00001I
29.991571 81.411409 50.000004
29998667 9r.0372t6 49.999996
30.008482 98.556068 49.999985

Table 4.10: Network recognition of NisoPdr,g(100) 1-Vcurves for six diff'erent second
layer compositions, having trained on five.
The network was trained on all of the structures shown except for the C,z : 80% Ni
case (indicated by a 'r'). The network was then shown each structure individually and
asked to identify the composition (7oNi) in each layer. Note that the network was able to
successfully determine the compositions of all three layers fbr the case on which it was
not trained. Training was for 2000 epochs.

including the one that was not included in the training data.

Having demonstrated the network's ability to recognize individual surface parameters

in a small number calculated 1-7 curves, the network was next trained on a larger set of

180 I-ycurves, in which the compositions of the top three atomic layers were varied over

a wide range (O-507a nickel in the top layer, 5O-1007a nickel in the second layer, and

3O-107o nickel in the third layer, in steps of l)Vo in each case). The interlayer spacings

for the calculated data were held constant at the bulk interlayer spacing of 1.87 A for

all layers. After the network was trained for 5000 epochs, it was shown lO I-V curves

(chosen at random) of the 180 curves on which it was trained. The results are shown in

Table 4.11, and demonstrate the network's ability to recognize the compositions of the

top three atomic layers when all are varied. These results also demonstrate the network's

30 50 50
30 60 50
30 10 50

x30  80  50
.r0 90 50
30 r00 50
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Tra in ing  da ta  (%Ni )

ct c2 c3
Network results (7oNi)

Ct Cz C3
2.136262 49.851015 58.018745
1.986109 69.535530 10.334132
t.954359 80.403419 28.389162
9.009162 69.81 1073 7t.389969
l8 .3619r6  69 .959421  7 | . t 37978
18.194620 80.903564 61.544018
29.218269 90.235481 39.805630
50.813413 89.646935 39.306042
51.199688 89.84027 | 57 .853497
51.065525 91 .106239 58.134566

Table 4.ll: Network recognition of Nir,0Pdr,g(100) I-ycurves for 180 combinations of
compositions in the top three atomic layers.
The network was trained on data with C1 :0-507oNi, Cz:50-l007oNi, and Ct -30-

7O%oNi, at intervals of 1O%. Shown here are the network results after being shown l0
of these 180 structures, chosen at random. Interlayer spacings were held constant at the
bulk value of 1.87 A. and training was for 5000 epochs.

ability to use a larger training data set.

4.4 Tests of Data Set Reduction

4.4.L Reduction of Number of Training Structures

Some of the early work in training the network required 100,000 training epochs and

sometimes over one week of computer time. In an attempt to reduce the amount of

training time required, the next phase of the network testing involved investigating various

05060
01070
08030
l0 10 10
20 70 to
20 80 60
30 90 40
50 90 40
50 90 60
50 100 60
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Expected
Results (7oNi)

ct c2 cs

Network
Results (%Ni)

Ct Cz C3
20.00 80.00 50.00
0.00 70.00 50.00
0.00 50.00 30.00

50.00 70.00 50.00
50.00 100.00 70.00
50.00 50.00 50.00
20.00 100.00 30.00
20.00 100.00 40.00
20.00 70.00 60.00

20.45 82.33 50.29
0.01 70.00 50.00

-  l .  l  1  37  .19  28 .15
50.00 69.99 50.02
45.46 92.03 65.80
51 .68  55 .0 t  5 t .85
20.23 t02.86 21.89
t9.87 t03.89 38.16
19.64 69.41 60.41

Table 4.12: Network test results after training on l5 selected structures.
('r indicates structures included in the training set.)

ways in which the training tirne might be reduced. One such strategy was to reduce

the total number of structures being used to train the network. since the network had

previously demonstrated the ability to "interpolate" between structures on which it had

been trained. From the total set of 180 calculated structures, l5 structures covering a

wide range ol compositions in each layer were chosen for training the network. Once

the network was trained, it was shown several of the structures from the total set of

calculated data, many of which were not used to train the network. The results of this test

are shown in Table 4.12. For the structures tested, the table shows that the network found

the surface layer compositions with root-mean-square errors of 1.677o for the top-layer

composition C1,5.6O7o for the second-layer cornposition C2, and 1.857o fbr the third-layer

composition Cj.
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Another attempt at reducing the number of structures in the training data involved

selecting every fifth structure out of the total set of 180 calculated structures. After

the network was trained on this data set, the tests showed that the network was unable

to correctly identify the compositions of the third atomic layer. The reason for this

quickly became clear: by choosing every fifth structure from the total set, the trarining set

coincidentally consisted of stuctures which all contained 307o nickel in the third atomic

layer. Consequently, once the network was trained, it always returned a result of 3O7o

nickel for the third atomic layer. This experience emphasized the importance of ensuring

that the training data is carefully chosen to adquately sample the parameter space being

studied. If one imagines a three-dimen.sional space with axes corre.sponding to each of

the atomic layer compositions C t, Cr, and Cr, then the total set o1' calculated data may be

pictured as a 6 x 6 x 5 lattice of points in that space. In choosing the data to use for the

training set, one must be careful to properly sample tliis parameter space. Choosing every

fifth structure in the parameter space corresponds to selecting a single plane of lattice

points parallel to the CrC.t plane with a constant vetlue of 30Vo nickel for C:r.

Subsequent tests of data reduction involved choosing increasingly sparse samples of

the total calculated data set. Training data sets for the network were created using every

seventh of the 180 structures in the total data set, for a total of 26 structures. Once testing

showed that this was satisfactory, another training set was created using every 17th of

the 180 total structures, for a total of .iLrst ll structures in the training set, or .iust 67o of

the total data set. At this time the LEEDNET program was upgraded to perform a more

thorough test after the network was trained: after training, the network was shown each

of the 180 structures in the total training set, and LEEDNET reported statistics on the

minimum, maximum, and root-mean-square errors fol each atomic layer. The results are
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Layer Min. Error (7c) Max. Error (7o) RMS Error (7o)
Ct
Cz
C:t

0.000
0.000
0.000

3.116
6.373
r4.505

0.281
0.266
0.621

Table 4.13: Network test results alter training on everv lTth structure.

shown in Table 4.13.

4.4.2 Reduction of Number of Points Per Training Structure

Having testecl the network's ability to identify surf-ace compositions fiom a relatively small

number of training structLrres, the next phase of network testing was ltt attempt to reduce

the number of data points in each 1-l/curvc. The calculated I-V curves contain data for

four separate beams, with 160 data points at 2 eV intervals in each beam, fbr a total of

640 points fbr cach clrrve. To test the network's ability to recognize I-V curve.s with

fewer data points in cach curve, the network was trained with training data at intervals of

4 eV and larger, as shown in Table 4.14. The training data for the results shown in the

table are fbr every lTth structurre of the total of 180 structures in the calculated data set,

as was done fbr Table 4.13. The errors shown in the table have been computed from the

errors found by showing the network all 180 structures in the original data set.
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Step(eV)
L

4
6
8
l0
t2
l 4
l 6
r8
20
24

C1 Errors(o/o)

Max RMS

3.116 1.063
5.529 t .121
4.290 |,396
2;792 0.987
6 .3n  t . 119
3 .911  1 .216
3.545 0.139
4.636 r .386
1.622 2.080
2.558 0.110
4 .494  l .  145
3 . t26  0 .832
1 .844 1.941
6.t20 2.092
4.188 t .366
3 .91 l  1 .168
4.881 0.995
12.869 3.298
9.442 3.125

C2 Errors(To)
Max RMS

C3 Errors(To)
Max RMS

14 .505  4 .  l 8 l
t6 .613 4.451
l6 . l  13  4 .221
16.841 4.821
13.451 4.044
14.818 4.448
r6 .160  4 .653
t | .513 3.166
19.930 4.789
16.  133 3.892
18 .033  5 .  l  35
15 .6 t7  4 .560
t4.392 4.621
8.907 2.623

25.251 6.936
12.492 3.295
14.322 3.361
26.633 6.265
18.439 5.066

40
50
60
10
80
100

6.313
8 .735
6 .358
8.859
13.094
5.266
4 .561
6.669
13 .388
8 .539
6.136
8.3r8
5.738
r5.048
1.701
5.342
t0.218
21.639
7.8-51

2.302
3 .101
2 .7 l l
3.348
3.905
1.923
2.038
2.678
3.904
2.421
3.139
2.774
1 .915
3.642
L864
1.68  t
2.619
6.365
2.188

Table 4.14: Network test results fbr reducing
All results are for a training set containing every
data set.

number of points in training sets.
l Tth structure of the total calculated
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4.5 Conclusions

It has been shown that a backpropagation artificial neural network can successfully identify

dynamically calculated LEED /-T.spectra for Ni5,ePdr,p(100). The network has been

shown to be able to identify not only spectra on which it was trained, but can also

"intetpolate" between the training data and identify spectra on which it was nctt trained.

In has, in fact, denonstrated its ability to identify a wide range of surface compositions

when trained on only - 70% of the structures on which it was tested.

The network was atlso shown to work succcsslully when the I-V data was sampled at

even very large intcrvals, clemonstrating the network's ability to identify 1-Z spectra even

with a minimum amount of traininc data.



Chapter 5

Application of Artificial Neural
Networks to Low-Energy Electron
Diffraction

"Veniet tentpus quo istu quoe nutxc lutent itt lucem dies extrahtil et lrtngioris uevi dili-

gent ia."

- Seneca, Nutural.es quuestiones, VII, xxv, 4

5.1 Introduction

HOU^O demonstrated the ability of irn artificial neural network to recognize dynam-

ically calculated LEED 1-7 spectra, the next phase of this Dissertation was to test the

abil i tyof thenetworktorecognizestructuralparameters inexperimental I-V spectra. For

this next phase, LEED I-V spectra were calculated for Ni5,6Pd5,s, and these spectra were

used to train the neural network. Once trained, the network was shown the experimental

86
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1-7 curves and asked to identify the compositions (percentage nickel) in the top atomic

layer, in much the same way that it had been asked to determine compositions from

theoretical data in the previous chapter. The results were compared to the results of a

conventional exhaustive search to show that the network was able to .successfullv identifv

surface structure parameters in experimental 1-V data.

5.2 Description of Experimental Sample

The experimental 1-Tcurves r-rsed fbr this str-rdy were for the (100) surface of a Ni5,11Pd,56

alloy, and were provided by Dr. Gregory Derry of Loyola College in Baltimore, Maryland.

They were available ft'om an earlier study on surface segregation [34]. The sample was a

small disk, I cm in diameter and I mm in thickness, cut from a single crystal to expose

the ( 100) plane. The sample was initially cleaned by polishing with diamond pastes; final

cleaning was perfbrmed in an ultra-high vacuum (- 11)-ttt torr) by repeated cycles of

sputtering with a beam of argon ions. An annealing procedure was performed between

sputtering cycles to repair the surface damage done by sputtering. Once all measurable

impurities were removed from the sample (as detennined by Auger electron spectroscopy),

a final zrnnealing procedure was perlormed and the sample was allowed to return to room

temperature before performing the LEED experiment.

To generate the LEED data, low-energy electrons with energies from 50 eV to 320 eV

were incident upon the cleaned Ni5,6Pd56 ( 100) surface in ultra-high vacuLrm. Data were

collected at several incidence angles, and for several different diffracted beams. For this

neural network study, only a subset of this data was used: the I-V data for the (10),

(11), and (20) beams diffracted from normally incident electrons. The data for each
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beam are averaged over several separate experiments and over symmetrically equivalent

beams. The averaged local background intensity was subtracted from the data by the

data acquisition equipment. The final data used for this work was also corrected for the

instrument response function, and was normalized so that the maximum intensity for each

beam is set to unity. The final data consists of this normalized intensity data for energies

from 50 eV to 320 eV in increments of 2 eV.

5.3 Theoretical Calculations

The calculated I-V spectra used to train the network were generated using standard com-

puter codes [1]. The Renormalized Forward Scattering (RFS) method was used to

perform the dynamical calculations, as described in Chapter 2. In addition, the standard

computer codes were modified to include the averaged f-matrix approximation (ATA) to

treat disordered alloy surfaces [34]. In this approximation, the f-matrix element that de-

scribes atomic scattering (discussed in Chapter 2) for each atom is taken to be a weighted

average of the f-matrices of the elements present, weighted in proportion to the percent

compositions of each element [35]:

t l ,,.t.n.: r:7151 -F (1 - c7)11,.1 (s . l )

Here tl,,ro is the averaged f-matrix for atoms in layer 1, whose concentrations are c1 for

nickel and 1 - c7 for palladium. The atomic t-matrices are tx1; for nickel and tp4 for

palladium.

Ni56Pd56 is a face-centered cubic structure in the bulk, with a lattice constant of

3.14 L. Fig. 5.1 shows the bulk structure in the (100) plane parallel to the surface.
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As shown in the figure, the nickel-palladium interatomic distance for this structure is

Q.74 bl\/ ,  :2.64 A, and rhe bulk inrerlayer spacing rs l{z3+ A) = t.87 A. The f igure

also shows that the bulk compositions of planes parallel to the (100) plane are 507o Ni

and 507o Pd.

1-V curves were generated for four beams for this structure: (00), (10), (11), and

(20). The calculations assumed an incident electron beam normal to the (100) plane, with

energies ranging from 30 eV to 348 eV. Thermal effects were included for the nickel

atoms only; the palladium atoms, being nearly twice as massive as the nickel atoms, have

only half the thermal energy and were assumed to be stationary during the calculations.

The Debye temperature of the nickel atoms was taken to be its bulk value, 440 K.

Figure 5.2 shows the experimental I-V curves used for this Dissertation, along with

the theoretical I-V curves corresponding to the results of the conventional search. As

the structure parameters used in the theoretical calculations are varied, the nature of

the peaks also varies, often in complex ways. As shown in Fig. 5.3, varying the top-

layer compositions (percent nickel) while holding the other parameters constant results in

changes in the peak amplitudes and shapes. Fig. 5.4 shows that varying the interlayer

spacing results in somewhat more complex changes in the peak amplitudes and shapes

along with energy shifts of the peaks as the interlayer spacing Ad12 is varied.

5.4 Initial Results

Initial testing of the network with experimental data was aimed at identifying only the

compositions of the first three atomic layers. The interlayer spacings were held constant

at their bulk values of 1.87 A. The training data thus consisted of 1-Vcurves calculated
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t
1.87  A

+

First layer

Second layer

Figure 5.1: Bulk termination of NisoPdsg in the (100) plane.

Note that this is a randomly ordered alloy, so that nickel and palladium atoms appear

randomly at each site.
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Figure 5.2: Experimental and theoretical I-V spectra for Ni5sPd50(100).
The data shown are for concatenated (10), (ll), and (20) beams.
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Calculated NisoPdso(100) lV Curves for Several
Top-Layer Compositions
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Figure 5.3: Theoretical I-V spectra for Ni5sPd50(100) for several top-layer compositions.
The data shown are for concatenated (10), (11), and (20) beams; the abscissa is an index
indicating the electron energy, which runs from 30 eV to 348 eV for each of the three
beams. Note the decrease in amplitude of the peaks around indicies 25 and 175 as the
top-layer composition becomes nickel-rich, corresponding to energies of roughly 80 eV in
the (10) beam and 60 eV in the (ll) beam, respectively. A peak around index 60 (roughly
150 eV in the (10) beam) is seen to increase with increasing nickel content.
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Calculated Nis.Pdso(1 00) lV Curves for Several
Interlayer Spacings
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Figure 5.4: Theoretical 1-7 spectra for Ni56Pdb0(100) for several interlayer spacings.
The data shown are for concatenated (10), (11), and (20) beams; the abscissa is an
index indicating the electron energy, which runs from 30 eV to 348 eV for each of
the three beams. The changes are more complex than for the case with changing top-
layer compositions shown in the previous figure. Some peaks are shifted, some change
in amplitude or shape, and some undergo all three changes as the interlayer spacing is
changed. Those peaks that are shifted are generally shifted toward slightly lower energies
as Ad12 is increased.

0.035

0.030

6 0.02s
=
c
f
t-

L
.=
€  0 . 0 1 5

6 o.o1o
c
c)
c o.oo5

0.000



94

for a variety of combinations of compositions in the first three atomic layers, which model

the segregation that takes place in the atomic layers in the surface. But since the interlayer

spacings were held at their bulk values, rerlaxation of the surface layers was not modeled.

There are several differer-rces between experirnental and calculatcd I-V data that need

to be allowed for befbre experimental data can bc shown to a network trained on calculated

data. First, the intensities fbr experimental data will generzilly not be expressed in the

same units as for the calculated data. Calculated intensities are fbund from the squared

amplitr-rdes of the cliffracted electron wave firnctions, while measured intensities are mea-

sured in some units that depend on thc equipment being used, such as CCD counts. Since

these two sets of intensity units arc not casi ly relatecl to each other. the usLral practice is to

express the intensitics in arbitlary units and to normalize the diffi'acted beam intensities

in some way. In the case of the experimental data used fbr this study, fbr example, the

I-V data were normalized so that the maximum intensity in each beam is set to unity.

In order to relate the calculated intensities to the experimental intensities, it is necessary

to apply some normalization scheme to both sets of data so that they are scaled to the

same units. One could, lbr example, mLrltiply the calculated data by a scaling factor

so that the maxiruum intensity of each beam is set to unityl it could then be directly

related to the experimental data. Because of uncertainties in the absolute values of the

peak heights, however, this rnethod w:.is not deemed to be the best approach. Al.so,

applying such ad.lustments to the calculated data would require re-training the network

fbr e;rch experiment, so it was considered best to apply all ad.justments to the experimental

data. To adjust the experimental intensities to the same scale as the calculated intensities,

the experimental intensity data were normalized so that the integral under the I-V curve
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between two fixed energies for both sets of data are equal:

1 5  ? \

This has the effect of requiring the mean intensity of both data sets to be equal. For this

work, a trapezoidal rule integrator was used to find the integrals of the calculated and

experimental I-V curves; the experimental intensities were then multiplied by the ratio of

these integrals to set them to the same scale as the calculated intensities.

A second issue must be addressed before experimental I-V curves can be used with

a neural network: since each of the network's input nodes represents the intensity at a

specific incident electron energy, the experimental data must be interpolated to the same

energy points as those used in the training data. For this study, the experimental data was

interpolated to the energy values used in the calculated data using a cubic spline.

A third issue that must be addressed befbre comparing experimental and theoretical

I-V spectra is that the experimental data will generally include an inner potential energy

shift which is not included in the calculated data. Physically, the inner potential is due

to dipole layers at the material surface, which have the effect of accelerating the incident

electrons to a higher kinetic energy as they enter the surface from the vacuum. As a

result, the I-V curves, being plotted against the energy of the electrons emerging from

the electron gun, are shifted as a result of this inner potential [6, ll]. The magnitude of

this shift is difficult to calculate since the value of the inner potential is often unknown,

and the absolute energy of the calculation can be uncertain (depending of the value of

the muffin tin zero). In practice, one often corrects for this effect by simply shifting the

energy scale of the calculated data so that its peaks align with the experimental peaks

[6], or it is treated as an additional non-structural parameter to be fit during the structure

/o' 1.*n".,nrenral(E) d,E : I 
I 

l.ot.rtut.a(E) d'E
.r  E; . t  Ei
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search.

For this phase of the neural network study, the object was to study only the network,s

ability to recognize atomic layer compositions; the network's ability to determine the

inner potential energy shift was not of immediate interest. To this end, a theoretical

1-7 spectrum was calculated using the best fit compositions and inner layers spacings

that had been previously determined using an exhaustive global search [34]. The inner

potential energy shift was then determined by shifting the experimental data in step.s of

2 eV until the peaks in the two data sets were aligned. This gave an energy shift of -6 eV

(i.e' the experimental data should be shifled 6 eV toward lower energy with respect to the

calculated data to align the peaks in the two clata sets). This value was used to eliminate

the energy shift issr"re from the problem for this first phase of tests with experimental data.

With the inner potential energy shift determined and the interlayer spacings set at their

bulk values, a set of I-V spectra was calculatecl in which only the layer compositions

were varied: O-5Oo/o Ni in the top layer, 5O-1007o Ni in the second layer, and 3y-joVo

Ni in the third layer, all in increments of l\vo. This resulted in 6 x 6 x 5 : 1g0 separate

sets of 1-7 spectra to be used fbr training the network. Once trained on these spectra, the

network was shown the experimental spectrum, corrected fbl the difference in intensity

scale and inner potential energy shift. The results are shown in Table 5.1. Cornparing the

network results with the error ranges fbr the target values shows a marrginal agreement

between the network results an<l the results fbund by it conventional exhaustive search.
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Layer
Compositions(%Ni)
Target Network

20 +  11  38 .75
100136 ez.es
34 + 14 48.73

Errors(7o)
Max RMS
2.10  0 .11
4 . t5  1 .45
1 .20  2 . t9

Table 5.1: Network test results for network shown experimental I-V data.
The network was trained on calculated data assuming bLrlk interlayer spacings. Training
data was for O-507o Ni in the top layer, 50-10OVo Ni in the second layer, and 30-707o
Ni in the third layer, in increments of 107o. Target compositions are fiom Ref'. [34].

5.5 Correction for Interlayer Spacings

The results shown in Table 5.1 are only marginally in agreement with the results found

by a conventional exhaustive search. One reason the results were not in better agreement

with conventional results is that relaxation of the surface atoms was not modeled in the

training data; instead, the interlayer spacings were all assumed to have the bulk value of

1.87 A. A first step toward improving these results, therefore, was to generate new training

data from calculations that include the correct interlayer spacings. Since this phase of

the testing sought only to identify the correct layer compositions, this new set of training

data was calculated using the interlayer spacings near the values that had been determined

using a conventional exhaustive search: 1.8326 A tOult< spacing minus 27o)between the

first and second atomic layers, and 1.1952 A tUutt spacing minus 4o/o)between the second

and third atomic layers. lnterlayer spacings for all deeper layers were taken to be their

bu lk  va lue of  1 .87 A.

The training data generated for this test was for varying compositions in the first three
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Layer
Compositions(7oNi)
Target Network
20 + 11 22.01
1oot36 102.27
:J4 + 74 42.78

Table 5.2: Network test results for network shown experimental I-V data, corrected for
interlayer spacings.
The network was trained on calculated data assuming "correct" interlayer spacings. Train-
ing data was for O-207o Ni in the top layer, 90-1007o Ni in the second layer, and 25-50Vo
Ni in the third layer, in increments of 57o. Target compositions are from Ref. [34].

atomic layers: O-207o Ni in thc top layer, g}-loooh Ni in the second layer, and 25-50Vo

Ni in the third layer, in increments of 5%, for a total of 90 training structures. The same

-6 eV energy shift was applied to the experimental data as was done for the previous test,

and the experimental data was normalized as before by scaling the experimental intensities

so that the integrals under the experimental and calculated curves wele equal. The results

are shown in Table 5.2, and show much better ergreement with the results obtained by

an exhaustive search. This improvement may be attributed to (l) allowance being made

for surface relaxation; (2) the smaller range over which the compositions were allowed to

vary; and (3) the smaller increment over which the compositions in the training set were

allowed to varv (5% Ni instead of l07o).
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5.6 Test with Wider Training Range and Fewer Examples

The next test of the network incorporated several improvements: (l) the range of com-

positions was widened and increment increased to produce a more useful test; (2) the

number of training structures was reduced from 90 to I I in order to reduce the amount of

time required to train the network; and (3) the training data was calculated using interlayer

spacings that were closer to the values found by the conventional search.

The interlayer spacings for this test were taken to be 1.8363 A tUutt spacing minus

1.87o) between the first and second atomic layers, and I .7933 A (bulk spacing minus

4.17o) between the second and third layers; these are the values that had been determined

by a previous study on surface segregation [34]. 1-Tcurves were calculated for this

structure for compositions of O-507o Ni in the first atomic layer, 50-100% Ni in the

second layer, and 3O-l}Vo Ni in the third layer, all at intervals of 107o. Just 1l of these

spectra were selected fbr training the network. After 250,000 training epochs, the network

converged to the values shown in Table 5.3. Convergence of the network in this case

required that the adapative learning rate be disabled and replaced with a constant learning

rate.

Although these results are within the error bars of the conventional search method,

the results obtained thus far were fraught with numerous difficulties. First, the network

required 250,000 training epochs before it was adequately trained, requiring several days

of computer time on a fast mainframe computer. This is in spite of having used only 11

different spectra to train the network.

Second, it was unclear when exactly the training should be stopped, as seen from

the error plots of Figs. (5.5) and (5.6). Large oscillations in the training error (Fig. 5.5)
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Layer
Cornpositions(7oNi)
Target Network

20 + 11 29.05
100196 91.49

34 + 74 42.41

Table 5.3: Network test tesults fbr network shown experimental I-V data. risins reduced
training set.
The network was trained on calculated data assuming "correct" interlayer spacings. Train-
ing data was for 11 selected structures in the range 0-507o Ni in the top layer, 5O-1007o
Ni in the second layer, and 30-7OVo Ni in the third layer. Target compositions are from
Ref. [34].

make it difficult to determine when the network weights have converged. Also, small

differences in the choice of when to stop network training can result in large differences

in the independent test error, as seen fiom the erratic nature of the independent test error

plot (Fig. 5.6).

A third difficulty with this result is that several aspects of the problem required know-

ing the "answer" (determined by a conventional search) ahead of tir-ne. In particular, the

experimental I-V curve was scaled to the same intensity scale as the calculated curve by

requiring the integrals under the experimental and calculated curves to be equal. However,

this required knowing vvhich calculated cLrrve to integrate. Furthermore, the energy shift

calculation required aligning the peaks in the I-V curve for the experimental data with

the peaks in the calculated curve for the known "correct" structure.

Lastly, while the results were within the error bars for the conventional calculation, it

would be desirable for the network to return results that match the conventional results
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more closely.

5.7 The Pendrv Y-function

In order to facilite the network's recognition of 1-V spectra, some means was sought to

improve the network's convergence, and to process the experimental data without knowing

the conventional result ahead of time. To address many of these difficulties, the author

decided to train the network using the Pendry Y-.function of the dynamically calculated

1-7 spectra, rather thiur using the I-I'/ spectra thernselves. Pendry has defined the function

Y(E)  by  [ l a ]

r ty(E) ,h
L  _ _ r v ) i

where L(E) is the logarithrnic derivative of the I-Lr spectrLrnr,

(s.3)

L(E) - r', lr , (s.4)

and L{; is the electron self-energy, which is around -4 eV for most materials at electron

energies above about 30 eV. Penclry clesigned this function to enrpher.size the physically

important components of the 1-V spectrum (such as the positions of the peaks), while

tending to suppress features of that are physically less important, such as the absolute

magnitudes of the intensities. The fbrm of the function I(E) given by Eq. (5.4) makes tr

insensitive to amplitLrdes for widely spaced peaks, bLrt gives too high emphasis to zeros

of I(E). The fbrm of Y(E) given by Eq. (5.3) solves this problem by giving similar

emphasis to zeros and peaks in f (C). This Y-function is commonly used to calculate

the Pendry .R-factor, a widely used measule of the correlartion between calculated and

experimental I -V spectra.
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Using Y(E) rather than 1(E) to train the network results in a much faster training

time and more reliable results than using the I-V spectra directly, since the network may

more readily recognize the physically important features of the network. Using Y(E)

also solves the normalization problems associated with using the I-V curves I(E).Using

1(E) required knowing the "correct" I-V curve ahead of time in order to properly scale

the intensities of the experimental data. The intensity units cancel in Eq. (5.4), and Y(E)

has units of eV-r. Thus no normalization of the experimental data is needed when using

Y(E), and no fbreknowledge of the results of the conventional search is required to scale

the data.

Examination of the experimental data reveals the presence of many spikes in the data

due to noise, which can lead to large fluctu:rtions in the derivativc 1'. For that reason,

both the experimental and calculated I-V drtd are first smoothed befbre the derivative is

calculated, using a three-point moving average:

1", , , , , ,1r , , , r (E;)  -  i l t@t-r)+ I (Et)  + 1(8,+t) ] 15 5'l

The Y-function of both the calculated and experimental data is then calculated using

Eqs. (5.4) and (5.3) with this smoothed [-V ddra. The calculuted ] '(E) data was then

used to train the network, with greatly improved results. Fignre 5.7 shows the training

error vs. training epoch. Comparing with the previous results of Fig. 5.5 using I-V data

shows that using Y (E) for training improves the convergence speed by a factor of 500,

and also results in much smoother convergence.
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5.8 Inner Potential Energy Shift

In order to enter the experimental data into the trained network, it is still necessary to

allow for the inner potential energy shift. and to interpolate the experimental data to the

same energy points as the calculated data. The inner potential energy shift was determinecl

by shifting the experimental data with respect to the calculated data along the energy axis

in steps of 0.1 eV interpolating the experimental data at the new energy points using a

cubic spline, and calculating the root-mean-sqLrare error between the Y-function of the

shifted experimental data and the Y-I'unction of the "correct" I-V spectrum found from

a conventional exhaustive scarch. This calculation yielcled a value of -4.7 eV for the

energy shift (i.e. the experimental data should be shifted 4.1 eY toward lowcr energy with

respect to the calculated data to align the peaks in the two data sets).

5.9 Testing With the Y-function

In orderthe test the nctwork'.s atr i l i ty to recognize I-V spectla using Y-functions. training

data was generated consisting of the calculated 1-V spectra of a wide range of possible

compositions: 0-507o Ni in the top atomic layer, 50-1007o Ni in the second layer, and

3O-707o Ni in the third layer, at intervals of lo7o, for a total of 180 different combinations

of compositions. The 1-7 spectra for each of these surface compositions was shown to

the network for 2000 training epochs belbre network training was stopped.

Once the network was trained, the experimental data wars corrected fbr the inner poten-

tial energy shift and interpolated to the same energy points as those used in the calculated

data to train the network. The shifted and interpolated experimental data was then stored
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Layer
Cornpositions(7oNi)
Tarset Network

20 +  11  12 .51
100136 98.00
34 + 14 36.43

Table 5.4: Network test results for network shown Y-function of experimental 1-7 data.
The network was trained on calculated data assuming "correct" interlayer spacings. Train-
ing data was for 180 structures in the range 0-507a Ni in the top layer, 50-1007o Ni in the
second layer, and 3V7O7o Ni in the third layer. Target compositions are trom Ref. [34].

into the input nodes of the trained network and thc network was rLrn. The resulting output,

shown in Table 5.4, shows that the netwolk wars able to identify the compositions of the

surface layers to within the error.s statecl fbr thc conventional calcr"rlation [34], with greatly

improved results over the previous atternpt to use the I-V data alone.

The results shown in in Table -5.4 using the Pendry Y-function are a significant

improvement over previous results using /-V spectra directly, particularly with regard to

the speed and smoothness of convergencc o1- the network. The lesults demonstrate the

network's ability to identify the sLrrfirce laycr compositions when the interlayer spacings

and inner potential energy shift are known. The next phase of network development was

to eliminate the requirement of a foreknowledge of these parameters, so that the surface

compositions and interlayer spacings could be determined without knowing any of the

results of a conventional search.



Chapter 6

LEED Surface Structure Determination
Using Artificial Neural Networks
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T
IN the previous chapter, it was shown that a backpropagation artificial neural network

was able to successf'ully identify the compositions of the first three atomic layers of the

( 100) surface of a crystal of Ni;-,6Pd5,1y alloy fiom its 1-7 spectrum. This required, however,

network training data that was generated using the interlayer spacings that were known

ahead of time. It also required knowing the correct compositions and interlayer spacings

ahead of time in order to determine the inner potential energy shift.

This chapter will describe the final phase of this Dissertation: testing the ability of

the neural network to identify all surface structure parameters (three layer compositions

and two interlayer spacings) without a foreknowledge of the results of a conventional

exhaustive search. Furthermore, the results in the previous chapter involved training the
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network with layer compositions that varied over a limited range; this chapter will discuss

an improvement in which the network is trained on structures whose layer compositions

vary over the full range O-1007a Ni, and whose interlayer spacings span a wider range

than before.

6.1 Determination of Interlayer Spacings

As a first step toward this goal, the the neural network was tested for its ability to recognize

the interlayer spacings alone, with tlie atomic layer compositions held constant at their

known values (as detern-rined by a conventional search). Training data was generated from

LEED dynamical calculations, setting the compositions of the first three atomic layers to

their "known" values as determined by a conventional search [34]: 20% Ni in the top

layer, 1007o Ni in the second layer, and 347o Ni in the third layer. The interlayer spacings

were allowed to vary over the rangc of -7o/n to I2Vo of the bulk spacing of 1.87 A, in

increments of lo/o, for a total of 100 training structures. As was done in the previous

chapter, the Pendry Y-function of the 1-7 curves was used to train the network, rather

than the 1-7 curves themselves.

The network quickly converged on this calculated data after 100 training epochs. The

trained network was then shown the Y-tunction of the experimental I-V curve, including

a -4.7 eV inner potential energy shift that had been determined by comparison with the

conventional results. Table 6.1 shows the network results, which are seen to be well

within the error bars of the conventional search.
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Table 6.1: Network test results fbr cletermination of interlayer spacings.
The search range for both interlayer spacings was -7va to lJTa.

6.2 Determination of compositions over the Full Train-
ing Range

Having verified the network's ability to successfully determine interlayer spacings after

having been trained on a relativeiy wide range of spacings, the next step toward improving

the network wa.s to test its ability to identify the layer compositions after training the

network over the fuJI range of possible compositions. In the previous chapter, it was

shown that the network was able to correctly identify the compositions of the top three

atomic layers of the Nir,oPdr,0(100) surface after training the network on. moderately wide

range of possible compositions. To further test the network's ability to iclentify surf'ace

layer compositions, a set of network training data was crcatecl using the full range of

possible compositions: 0-1007o Ni in each of the top three atomic layers. The r-esults of

the training after 10,000 epochs are shown in Table 6.2. The interlayer spacings in this

case were held constant at the values determined by a conventional exhaustive search:
-1.8% of bulk between the first and second layers, and, -,4.I% of bulk between the

second and third layer.

-1 .8  +  1 .2
-4 .1  +  1 .8

1.836 + 0.022
1.793 + 0.032

-  1 .68  1 .8386
-3.59 1.8028
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Parameter
c1 (%Ni)

G (7oNi)
q (%Ni)

Training
Range

0 100
0 100
0 r00

Training
Interval

l 0
l0
l0

Results
Expected Network
20 + 11 11.03
100136 91.34
:J4 + 74 20.98

Table 6.2: Network test results for determination of atomic layer compositions (full range
of training data).
The experimental data was corrected for the -4.7 eY inner potential energy shift, and
the training data consisted of 666 structures (every second structure of the 113 : 1331
combinations of compositions). The network was trained for 10,000 epochs.

6.3 Simultaneous Determination of Compositions and In-
terlayer Spacings

The next phase of development of the neural network was to test its ability to simulta-

neously recognize both surtace compositions and interlayer spacings. Since this involves

varying three composition parameters and two interlayer spacings, this creates a much

more stringent test for the network than the previous tests. To approach this problem,

an initial test checked the network's ability to identify all five structure parameters for

theoretically calculated data. This was followed by a test in which the calculated data

was replaced by experimental data, and the network was trained over a restricted search

range. The final test used experimental data with the network trained over a full search

ranse.
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Parameter
Training
Range
0 100
0 100
0 r00
-7 +3
-7 +3

Training
Interval

Cr (7oNi)
Cz (7oN1)
Cs (7oN1)
Lrl,tz (Vo)
Ld,n (7o)

20
20
20
2
/.

Results

20 +  11  18 .98
100136 loo.3c
34 + 1{ 34.10

-  1 .8  I  1 .2  2 .0 r t
-4 .1+  1 .8  -4 .07

Table 6.3: Network test results for simultaneous determination
terlayer spacings, with network shown calculated data.
The training data consisted of 1776 stmctures, and training was

of compositions and

for 10,000 epochs.

ln-

6.3.1 Calculated Data

For this test, standarcl computer codes [ | I I were used to generate dynamically calculated

1-V spectra for the (10), ( l l ) ,  and (20) beams diffracted from Ni51;Pdr,g(100) for a wide

range of structures: compositions of 0-1007o Ni in the top three atomic layers and in-

terlayer spzrcings of -7Vo to *3o/o of the bulk spacing of 1.87 A. The'se spectra were

then used to train the network for 10,000 training epochs. The same computer codes were

used to generate 1-7 spectra for the structure found by a conventional search (Cr2o7oNi,

Cz=lOO%o Ni, O,=347o Ni, A.d,t,2 - 7.8Vo, Ld2l - -rI .7Vo) and this clata was shown

to the trained network. The network successfully determined all five of the structure

parameters to well within the error bars, as shown in Table 6.3.

As with other network runs described in this chapter, the network was trained on the

Pendry Y-function of the I-V curves, rather than on the I-V curves themselves, because

of the improvement in network performance described in Chapter 5.



113

In order fbr the network to simultaneously identify both the layer compositions and

interlayer spacings, the network software had to be modified for this case so that scaling

of the outpttts from the network (Section 3.5) could be performed separately for each

output, rather than having a single set of scaling parameters for all network outputs.

This is because the "true" (unscaled) network outputs may range fiom 0-100 (7o) for Ihe

layer compositions, while the interlayer spacings only range from a few percent around

1.87 (A). Scaling each output separately allows for the differences in units for each output

and allows the network to treat each output on an equal fboting. The scaled outputs range

between 0 and l, regardless of the range or units of the unscaled outputs.

6.3.2 Experimental Data (Restricted Range)

For the next test, a set of training data was calculated in which the top three layer

compositions and top two interlayer spacings were all varied over the restricted ranges

shown in Table 6.4. As shown by the table, the network was able to successfully recognize

all five search parameters to well within the conventional error bars in this case as well.

The experimental data was shifted -4.7 eY (toward lower energies) in this case to allow

for the inner potential.

6.3.3 Experimental Data (Full Range)

The final step in evaluating the network's ability to simultaneously recognize all five

search parameters was to expand the range of the data used to train the network. In

this case, the network was trained using layer compositions of 0-1007o Ni (in steps of

207o) for all three surface layers, and the interlayer spacings Ad were searched from
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Parameter
Training
Range
050
70 100
30 60

2 1- { ,  -  a

t i ?- ( ,  - J

Training
Interval

Results
Expected Network

C1 (7oNi)
c2 (okNi)
Ct (7oNi)
Ldlz (7o)
Ld,zt (Vo)

20 +  11  12 .13
100136 es.6o
34 +  14  35 .85

-1 .8  +  1 .2  -1 .61
-4 .1  +  1 .8  -3 .97

Table 6.4: Network test results for simultaneous determination of compositions and in-
terlayer spacings (restricted range of training data).
The experimental data was corrected for the -4.7 eY inner potential energy shift, and the
training data consisted of 486 structures.

-7o/o to *3% of the bulk layer spacing in steps of 2o/o. Larger intervals were used for the

calculated data (2oo/o fbr compositions and 27o for interlayer spacings) than had been used

previously in order to keep the number of calculated structures in the network training data

to a reasonable number. The initial results, shown in Table 6.5, show that the network

was able to identify four of the five search parameters to well within the conventional

error bars. The network was not, however, initially able to correctly identify the top layer

composition C1 to within the error bars of the conventional exhaustive search in this case.

It was first thought that the network's inability to correctly identify the top layer

spacing might be due to the large intervals in different values of C1 used in the training

data: the network had only been trained on examples thzrt showed O, 20,40, 60, 80, and

lUOVo Ni in the top atomic layer. Because changes in the top layer should have a larger

effect on I-V data than deeper layers due to the surface sensitivity of LEED, these large

intervals may result in changes in the I-V curve that are too large fbr the network to be
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Parameter
Ct (7oNi)
C2 (7oNi)
c3 (%Ni)
Ld,n (%)
L,d,zt (7o)

Training
Interval

Results
Expected Network

0 100
0 100
0 100

-7  +3
J  t D- t  

f ' )

20
20
20
2
2

20 +  11  -0 .34
r n n l 0
_t  ( , ( ,  t6  66. / )

34 t l4 33.84
-1 .8  +  1 .2  -1 .89
-4 .1 -E  1 .8  4 .44

Table 6'5: Initial network test results for simultaneous determination of compositions and
interlayer spacings (full range of training data).
The experimental data was corrected for the 4.7 eY inner potential energy shift. The
training data consisted of 34 | calculated structures, each of which had a' averase com-
position of 4O-6OVo Ni for the top rhree atomic layers.

able to successfully "interpolate" between thern. With this in mind, a new set of training

data was created in which the top layer composition was varied at intervals of l0% instead

of 207o. It was discovered, however, that this change hacl no appreciable effect on the

network's ability to corrcctly recognize tlie top layer composition c1.

The difficulty with the network's ability to identify the top layer composition was

ultimately traced to the network learning rate parameter cf;, which is the factor by which

changes to network weights are multiplied when the weight updates change sign from

epoch to epoch (Eq.3.41). The value of cf had, previously been set to 0.5, which causes

the changes to the network weights to decrease rapidly (and thus increase convergence

speed) for a wide variety of problems t32]. In this case, however, it caused the network

weights to converge too quickly, so that the weights converged to a localninimum in the

error surface for the problem, rather than the global minimum.
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Parameter
Training
Range

0 100
0 100
0 100

F 7  t ' )- I  
T J

-7  +3

Training
Interval

cl (%Ni)
Cz (VoNl)
C3 (7oNi)
Ld,n (7o)
L,d,.p (/o)

20
20
20
2
z

Results
Expected Network
20 + 11 28.51
100186 83.78
34 + 14 40.41

-1 .8  +  1 .2  -3 .93
-4 . i  +  1 .8  -1 .66

Table 6.6: Improved network test results for simultaneous determination of compositions
and interlayer spacings with r/ : 0.85 (full range of training data).
The experimental data was corrected fbr the -4.7 eY inner potential energy shift. The
training data consisted of 1716 calculated structures, and the learning rate parameter /
was set to 0.85. Results are shown at 4100 training epochs.

In order to slow the network convergence to allow it to find the global error minimum,

the learning rate parameter f-l was incrcased to 0.85 and it was re-trained with the same

1-V spectra covering the same wide range of compositions and interlayer spacings. Upon

being shown the experimental spectra. the network was this time able to correctly identify

the five surface structure parameters, as shown in Table 6.6.

The interlayer spacings found by the network in Table 6.6 show an interesting f-eature:

although the results are close to the conventional search error bars, they are much closer

to conventional search results for the other layer. In other words, the network's result for

Ad12 is close to the conventional result for Ad23, and the network's result for Ad23 is

close to the conventional result for Ad12. This is, in part, an artifact of the way in which

the interlayer spacings are defined (as a percent difference from the bulk spacings). If the

interlayer spacings are instead defined by the distance of each layer fi'om the top layer,
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then the network returned a distance of 3.93% bulk to the second layer and -5.59%

bulk to the third layer, while the conventional search gave -1 .8+1.2% bulk to the second

layer and -5.9 + 3.0% bulk to the third layer. In other words, the network returns the

same third layer distance to well within the conventional error bars, but gives a second

layer distance just outside the conventional error bars.

As a further investigation of this result, theoretical 1-7 curves were calculated with

both the conventional search results and the conventional search results with the values

of d,1,2 and d,y switched. As shown in Fig. (6.1), switching the two interlayer spacings

results in very similar -I-V curves. This example illustrates a difficulty common to all sur-

face structure determination using LEED 1-V spectra: since I-V data are not necessarily

unambiguous, there may be some ambiguity in the structure determination.

6.4 Further Improvements

Another attempt to improve on this result involved the use of independent information in

creating network training data. Since the bulk composition of the alloy is 507o nickel, one

would expect that the mean composition of the first few atomic layers would also be close

to 5O7o nickel. Accordingly, a set of training data was created which consisted entirely of

structures whose mean composition in the first three atomic layers ranged from 40-6OVa

nickel. While this reduced the size of tl-re training data (and thus the training time) by

roughly a factor of 2, rt did not significantly affect the results; the network was still able

to find esseentially the same results as the exhaustive search for all surface parameters.

One difficulty encountered in using a network to simultaneously determine five struc-

tural parameters is that the network would tend to diverge when given too many training
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NisoPdso(100) l-V Curves with Swapped Layer Spacings
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Figure 6.1: Theoretical I-V curves for Ni56Pdb0(100) (with "swapped" layer spacings).

The curve labeled "conventional" is for Ad12 : -1.8y0, Lda4 == -4.lYo; the curve

labeled "swapped" is for Ad12 : -4-1T0, Ld,:t4: -f  .8%.
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examples. If, for example, one creates a set of training data consisting of five varying

parameters (Ct, Cz, Cj, clp, d23) sampled at six points ezrch, this creates a set of training

data containing 6r' : 7776 different structures. It was found that training a network with

data sets of this size would cause the (un-scaled) network outputs to saturate at either 0

or I , thus giving useless scaled outputs.

Several strategies were attempted to try to remedy this situation. At first it was thought

that the additional data being shown to the network might require more hidden nodes so

that more weights would be available to store the additional infbrmation in the network.

Many attempts were milde to train the network with 7776 exarnples in the training data,

in which the number of hidden nodes in thc network wets increased from 30 to as many as

250 nodes. None of thcse attempts succeeded in making the network converge for these

large training data scts.

Another attempt at fixing this ditficulty was to decrease the initial network weights.

Network weights are initialized to small random values; nominally, the LEEDNET pro-

gram Llses random numbers - 10 a. Scveral attempts were made to decrease these initial

weights to numbers as low as - 10 r', with no effect cln the convergence of the network.

Attempts to simultaneously increase the number of hidden nodes and lower the initial

network weights also had no effect; the network continued to give saturated unscaled

outputs of either 0 or l.

One way to circumvent this convergence problem is to simply decrease the size of

the training data set. Experience throughout this Dissertation shows that the network will

converge well for training data sets consisting of - 500 spectra or f-ewer, but the outputs

become saturated if much rnore training data (- 1t)00 or more spectra) are used. To

decrease the size of the data set, a program was written which samples a data set at fixed
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intervals to produce a new data set which may then be used to trelin the network. one may,
fbr example, have a set of 1-7 spectra in which each of five surface pal,ameters varies
over six different values, for a total of 6r' : 7776 spectra. If this clata set is sampled so
that onlyevery l3th spectrum is used, a clata set is produced consisting of 599 structures,
which does converge' As noted in chapter 4, however, one must be careful to sarnple the
original data set at an interval which will sample the parameter space well so that each
parameter in the sampled data is allowecl to vary over its entire range.

This difficulty with network convetgence when using large sets of training data was
ultimately traced to the "batch" learning uscd by the network, as described in section
3'9' when training the network on a set of I-v spectra, the entire set of training darta is
shown to the network, one spectrum at a time. The network emor is computed after each
spectrum, and all errors arc added bgether lbr the entirc data sct to find the network's

net error, which is then used to ad.iust thc network weights. Using batch learning, rather
than correcting the network weights after each individual spectrlrm, prevents the network
training from being uncluly biased in favor of those examples which it was shown most
recently.

The network error alier cach batch is updated according to the adaptive learnrng rate
given by Eq. (3.41):

" r r - {  

" : r ' r : ' ,

i f  d , , , J , , ,  )0 ,

if dr,,. l 'r,,< 0

The actual weight change is then proportional to the aclaptive learning tate e,,,.If a large
number of spectra is used to train the network, then the network errors at the end of one
"batch" of training will tend to be larger than for a smaller training data set. Accordingly,
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the adaptive learning rate parameter n, should be scaled according to the number of spectra

in the training data. This was done, ancl it was lound that decreasing the value rc for

larger numbers of spectra in the training data does, in fact, allow the network to converge

properly.

However, experience with the network has generally shown that better results are

achieved by training the network with a reduced set of training data, rather than using

the full set of training data with a reduced learning parameter rc. For example, consider

the problem of using the network to dctermine the top three atomic layer compositions,

as discussed in the previous section. 1-V spectra rnay be calculated 1br this problem for

which the compositions of each of the top three atomic layers verries between 0 and 1007o

Ni, in steps of lOVo, for a total of 113 : 1331 structures. To permit the network to

converge on the training data, one courld either train the network with all l33l structures

using a smerll rc (e.g. x, : 0.01), or one could create a smaller set of training data by

using only every third spectrum in thc training data, thereby reducing the training data

set to 444 structures. Both of thesc options were tried witli a network training fbr 200

epochs, and the results are shown in Table 6.7. As shown in the table, better results are

obtained by reducing the size of the training data set to less than - 500 spectra. As a

bonus, the reduced-size training set case requires only one-third the training time of the

full-size case.

6.5 Energy Shift

The inner potential energy shift (described in Chapter 2) is a rigid shift of the I-V spectrum

along the energy axis due to the presence of a potential step at the metal surface. Through-
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Parameter
C1 (7oNi)

o (7oNi)
Cs (7oN1)

Training
Range

Training
Interval

r0
l 0
10

0 100
0 i00
0 100

31 .18
61 .48
26.80

Results
Reduced Conventional

t3.79 20 + 11
9o.ol 1oot36
3t.27 34 + 14

Table 6.7: Network test results for determination of atomic compositions, comparing two
methods for ensuring network convergence.
The column labeled "Full" shows the results for the full training data set of l33l spectra,
with a smaller learning rate parameter ,s, : 0.01. The column labeled "Reduced" is
for a reduced training data set of 444 spectra, with learning rate parameter n : 0.1.
The "Conventional" column gives the results of a conventional exhaustive search [34].
The atomic interlayer spacings were set at thcir conventionally-determined values (rly2:
-l.S% of bulk, rl,2;1 - -4.1% of bulk). Network training was for 200 epochs in both
cases.

out most of this study, this energy shifi was known from a comparison with the known

surface structure, as determined by a conventional calculation. A predicted 1-7 spectrum

was dynamically calculated using thc surlace parameters found by a conventional search

[34]; the Pendry Y-function of this spectrum and the experimental spectrum was then

found, and the two spectra were shifted with respect to each other in steps of 0.I eV. For

each shift, the root-mean-squared error between the two spectra was computed; a value

of -4.7 eV was fbund to be the shift which produced the minimum error, and thus the

best agreement between theory and experiment.

If the inner potential energy shift of the sample being investigated is by some means

known a priori, it may be used to correct the experimental data before showing the

experimental data to the network. Even a rough approximation of inner potential energy
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Energy
Shift (eV)

-1
o

- . )
,1

- 5
-6

Structure Parameter
C{Vo) Cz(Vo) C{Vo) Ldn(Vo) Ld2z(Ta)

30.284 61.951 26.0t9 -4.78

28.693 t 1.246 30.698 -4.67

28.t45 79.147 35.445 -4.51

28.213 83.653 38.836 -  4.25
28.584 83.299 40.655 -3.82

28.726 71 .730 4 l . l l0  -3 .15

- 2 .18
o  1 2-  
L . I . )

-  1 .98
1.8t )

-  1 .63
7 .42

Table 6.8: Network test results for a variety of inner potential energy shifts'

Note the relative insensitivity of the network results to the value of the energy shift chosen'

shift is sufficient for the network to leturn aclequate results. Table 6.8 shows the network

results after being shown experimental clata fbr Ni5,ePd5,0(100) shifted 1br energy shifts of

-1 eV to -6 eV. As shown in the table, the parameters returnecl by the network are all

sirnilar to those returned for the optintum shift (found by comparison with the conventional

search results, Table 6.6), regardless of thc cnergy shift rrsed.

6.6 TransferabilitY

One potential aclvantage of artificial neural networks is that once trained for one crystal,

it may be able to recognize the surface parameters in similar materials. To test this

idea, the network w1s first trained on the Nir,0Pd50(100) surface described earlier. I-V

Spectra were then calculated for a similar crystal surface, Cu5,6Pd5,e(100), by repeating

the dynamical calculations for Nir,oPdro(100) using the same structure parameters, but
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Parameter
Tlaining
Range
0 100
0 100
0 100

F 7  t ,- 
I 

-frj

-  t . )- t  t . )

Training
Interval

Cr (7oNi)
Cz (7oN1)
Cii (7oNi)
Lrl72 (Vo)
Lr1,.2j (o/o)

20
20
20
2
2

Results
Expected Network
20 + 11 14.08
100196 l03.3o
34 + 14 39.29

-1 .8  +  1 .2  0 .87
-4 .1  +  1 .8  -4 .60

Table 6.9: Network test results for simultaneous determination of compositions and in-
terlayer spacings for Cu5,ePdsg( I 00).
The network was tlained on dynamically calculated clata for Ni51yPd"0(100), then shown
dynamically calcLrlated spectra fbr CLrroPd.o(100) for which C1 = 2gVnyi, C,2 = l007oNi,
Ct = 347oNi, Ad12 : -I.8oA bulk, and Lrl,2l : 4.Io/o bulk.

with phase shifts for CuPd. f'his data wers shown to the network; the results, shown in

Table 6.9, demonstate the network's ability to succcssfully recognize the CuPd structure

parameters in this case.

6.7 Discussion

A backpropagation neural network has been shown to be able to correctly identify two

interlayer spacings (given the layer compo.sitions) and the three top layer compositions

(given the interlayer spacings) to within the error bars specified fbr a conventional ex-

haustive search. The network was also at'rle to find all five parermeters simultaneously;

this required adjusting the network's learning rate parameters to accommodate the larger

number of training examples and to ensure that the convergence was sufficiently slow
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that the global ninimum in the error surface was not missed. The network's results were

shown to be relatively insensitive to the value chosen for the inner potential energy shift.

Neural networks offer some etdvantanges in lessening the computation time needed

needed to perform a .sut'f'ace structure determination. The time lequirecl to perform an

exhaustive search scales exponentially with N (i.e. as eN;, where // is the number of

structure parameters being sought and E is related to the number of points in each dimen-

sion of parameter space [22]. Simulated annealing algorithms, on the other hand, scale

as a polynomial in the number of degrees of freerlom [36], i.e. as -A,/r, in this case.

The computational effort required to perlbrm a neural network search scales expo-

nentially with the number of search par:lmeters as cloes an exhaustive search, although

the number of structures in each dimension clf parameters space can be smaller than fbr

an exhaustive search. That is, the computation time required will scale as efl,, where

g ? l n  \  L .

The savings in compLrtational time ol-an artificial neural nctwork over an exhaustive

.search is due in large part to the coarser grid of dynamically calculated data compared

to the grid needed lbr the exhaustive search. This ability to return results using a coarse

parameter grid is related to the network's ability to "interpolate" between structures on

which it has been trained. One must therefore provide the network with -I-Z spectra on a

grid just fine enough to permit an accurate interpolation. As discussecl earlier, it was founcl

that a 2OVo spacine in the compositions and a 2Vo spacine in the grid of inter-layer spacings

was adequate for the network to successfully recognize the experimental I-V spectra.

A neural network search thus ofl'ers some advantages over an exhaustive search. It

can be trained on a relatively coarse grid of structures in parameter space, so that fewer

dynamical LEED spectra need to be calculated, resulting in a substantial savings of
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computer time. Once trained, the network can be shown several experimental spectra

of different samples and immediately return the structurc parameters, without a need to

search the parameter space again. Finally, the network's ability to recognize the stlrcture

parameters for CuPd after hetving been tlained on NiPd spectra illustrates a potential for

transferability of a trained network to other .similar- materials.

6.8 Concluding Remarks

6.8.1 Future Directions

Standard backpropagation neural network designs use a graclient clescent method to update

the network weights. Fttture improvements ir.r the usc artificial neurerl networks fbr LEED

structural determination might be realizecl by tinding improved methods fbr updating these

weights. For exarnple, one might consider developing a backpropagation network in which

network weights are updated according to a simulated annealing algorithm, rather than

the standard gradient descent equations.

other future work might center on the testing the ability of a network to recognize

reconstructed surfaces, or surfaces with adsorbate layers. In addition, there are many

qltestions in neural network theoly thitt remain unanswered (slrch as the tr prirtr1 determi-

nation of the number of required hidden nocles) that wor-rld be of great practical interest

in the application of networks to practical problenis.
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6.8.2 Summarv

A backpropagation artificial neural network has been shown to identify the atomic layer

compositions and interlayer spacings for the (100) surface of Ni56Pd5,6 in agreement with

the results found by a conventional exhaustive search. The best results were found for

problems involving f-ewer search parameters, such as finding two interlayer spacings or

three compositions alone. Successfully finding five parameters simultaneously proved a

bit more difficult, and required some ad.justment clf the network training parameters.

The surface used in this study, that o1'Ni5,ePcl5,1;, is for a binary alloy and has five

significant surface parameters that are of interest. Simpler structuLes, such as elemental

metal crystal surfaces, would involve fewer search parameters and would therefore be

good candidates for structure determination with a neural network. In such cases, use

of a neural network off-ers several advantages. Relatively few (- 500) 1-V spectra need

be calculated; since each such spectrum involves fairly complicated and time-consuming

dynamical cztlculations, this ciur rcsult in a significant time savings. The network training

(using the Pendry Y-function) typically converges after just a few hundred training epochs,

often involving less than one hour o1' computer time. Once trained, the network can

immediately identify surface parameters when shown an experimental 1-V spectrum. This

can result in a particr,rlarly significant tirne savings if data from several sirnilar samples

are to be analyzed.



Appendix A

LEEDNET User's Guide

LEEDNET is an artificial ncural netwolk program that implcments a backpropagation

network fbr the analysis ol- low-energy electron dil'lraction (LEED) 1-'1,/ spcctra. Using

starrdard computer codes I l], one can generate theoretical I-lt spectra Ior a number of

plausible surface structures. LEEDNET will allow this data to be fbrmatted into its own

data fbrmat, after which it can be uscd to train the network on these -1-7 spectra. Once

trained, the network rnay be shown an experimental I-V spectrum and asked to identify

the surface paralleters.

LEEDNET has a command-line interlacc which allows it to be run either interactively

or as er batch -job through the executic'rrt cl1' script files. The intertace allows the network

to be readily customized fbr the problem at hand, and it includes built-in help files.

LEEDNET is written in standard ANSI C, and should be highly portable to a wide

variety of computer platfbrms. For this dissertation, LEEDNET wels run on a Silicon

Graphics computet 'running a UNIX operating system.

t28
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A.1, Running LEEDNET

To run LEEDNET in interactive

$ leednet
LEEDNET Vers i .on  1 .04h

[ 1 ]  >

mode under UNIX, type

LEEDNET begins by displaying the program version number; this may also be dis-

played at any time by typing the ver command at the command prompt. The string [1J >

is the command prompt, and indicates that LEEDNET is waiting for a command to be

input. The number between the square brackets begins at I when LEEDNET is started,

and increments by I each time a commzlnd is entered.

On-line help is available for LEEDNIIT at any timc by typing help at the command

prompt:

[1J > help

Typing help without arguments prints a list of the available LEEDNET commands.

One may also type help env at the command pronlpt to see a description of available

environment variables (q.v.), or help cmdrutme for detailed help on a specific command.

To exit LEEDNET, simply type either quit or exit at the command prompt:

[2] > quit
$

LEEDNET may also be run in batch mode; tliis is particr-rlarly useful for network

training, which can require several hours of computer time. To run LEEDNET in batch

mode, one creates a scripting flle with a ". scr" file extension which contains the LEED-

NET comn-rands to be rut-t. One then passes the flle name (sans . scr extension) on
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the LEEDNET command line and submits LEEDNET as a batch job. If one creates a

scripting file called run001 . scr, for example, it can be run under UNIX as a batch job

using

$ leednet run001 &

One should always end a scripting file with a quit command so that the batch job

terminates the LEEDNET program.

L.2 Environment Variables

The operation o1 the LEEDNET program and its network parameters may be customized

by the setting of enttironment vuriubles. Subsection A.8 summarizes each of the available

environment variables and their use. The values of all environment variables may be

displayed at any time by typing set (without arguments) at the LEEDNET command

line.

The value of an environment variable mav be changed bv using the "set" command:

set <varname>=<value>

A.3 File LEEDNET. INI

Whenever the LEEDNET program begins, it will look fbr a file called LEEDNET. INI in

the current directory. This file is used to start LEEDNET with any desired values in

the environment variables so that they need not be set manually each time LEEDNET is

started.
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The lines in the LEEDNET. INI flle may be of three types:

(l) Any line beginning with a semicolon (;) is a comment line and is ignored.

(2) A line of the form <varname>=<val-ue) sets environment variable <varname>

to the value <value> upon starting LEEDNET.

(3) An output node scaling may be set with a l ine of the form scal-e <n> (tmin)

<tmax>. See Section A.7 for a description of the scale command.

4.4 Formatting the Data

The first step in using LEEDNET is to fbrmat the dynamically calculated 1-7 data into

a format r-rsable to the program. LEEDNET data files are plain text flles which contain

three header lines fbllowed by the intensity data and network parameters:

Number of input nodes (I)

Number of output nodes (J)

Number of structures in data f j- le (N)

I  l ines of  in tens i ty  data > repeated

J l ines of output parameters ) N t imes

Note than energy values are not explicitly used by the network.

To format the dynamically calculated data, begin by writing a C function to convert

the dynamically calculated I-V dila into this format. Appendix C shows an example

program, F0RMAT01.C. This function should then be linked into the LEEDNET main

program, fbllowing the example of f ormat0l O shown in the LEEDNET listing in Ap-

pendix B. Once LEEDNET has been properly compiled and linked, it can by run and the
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f ormat command used to format the data. For example, suppose the original dynamically

calculated I-V data is in a file called iv.dat, and we wish to format the data, placing

the output into a new file iv. fmt using function f ormatO1O. The following LEEDNET

commands wor-rld be used:

[1 ]  >  se t  o r ig ina l= iv .  da t

[2 ]  >  se t  fo rmat ted= iv .  fmt

[3 ]  >  se t  func t ion=1

[4] > format

The original environment variablc specifies the file name of thc original data file; the

f ormatted variable specifies the file name of the output data file; and f unction specifies

which of several  possible formatt ing funct ions is to be used (1 indicates formatOlO).

If a large amount of data is involved so that a large amount of time would be needed

to format the data, it may be usefr-rl to place these commands into a scripting file and to

run LEEDNET as a batch program, as dcscribed earlier.

A.5 Training the Network

Once the I-V data has been properly fbrmatted, the network can be trained using the train

command. Since network training generally involves significant amounts of computer

time, network training is usually done through a scripting file, running LEEDNET as a

batch program. At a minimum, this scripting file should contain commands to set the

training environment variable to specify the name of the file containing the training

data; to set the epochs variable to specify the number of training epochs; and the save

variable to save the network weights once training is completed. A typical scripting file

is shown below.
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; Network run #77

set training=/umb c /resear ch/rous /S impson/ ivyr '  055

set we i  ghtf  i  l -e=/umbc,/re search/rous/S imps onlwe ight s '  077

set error6ul=/umbc /resear ch/rous /S impson/error '  O77

set hidden=4O
set epochs=10000

set  de lp r t=100

set delanalyze=100

s e t  e r r o r l i m = 1  . 0 e - 7 7

set adapt ive=1
set  kappa=O.001
set  ph i=O.  85

sca le  1  0  100

sca le  2  0  100

sca le  3  0  100

s c a l e  4  7 . 7 3 9 t  I . 9 2 6 t

s c a l e  5  I . 7 3 9 I  I . 9 2 6 t

trai-n
SAVE

ouit

In this example , environment variables are set to specify the name of the file containing

the (formatted) training data; the file name to hold the final network weights; and the file

name to hold the network training error (at intervals ol delprt epochs). This scripting

file also specifies a network with 40 hidden nodes, tliat adaptive learning should be used,

and gives scale commands to properly scale the network outputs. The train command

near the encl of the script actr.rally performs the network training; when finished, the save

command saves the network weights into the file specified by weightf ile.

Two features in LEEDNET allow the user to keep track of the training of the net-

work. The detana:ryze environment valiable specifies the interval at which to save the

intermediate network weights. The network weights will be saved every delanalyze
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epochs into a file called innnnruut.wgt, where ru.uulnntl is tlie number

allows the user to monitor the performance of the network befbre the

completed. Al.so, the cLurent training cpoch ancl training error are saved

by the statusfire variable every delprt cpochs, so that this f i le mav

the terminal at any tirne to check the training statlls.

of epochs. This

final training is

t oaa f i l eg i ven

by clisplayed at

4.6 Using the Trained Network

Once the network has been trainecl, thc nctwork is Lr.sccl by loacling the appropriate weights,

specifying an inpr-rt fl le (containing onc sct ol'1-V spectra which the network will be asked

to identify), and using the ask conrmancl to run the network. For example,

I t ]  >  s e t  w e i g h t f i l e = w e i g h t s . 0 7 7

[2 ]  >  load

[3 ]>  se t  s ing le=expdata .da t

[ 4 ] >  s c a l e  1  0  1 0 0
[ 5 ] >  s c a t e  2  0  1 0 0
[ 6 ] >  s c a l e  3  O  1 O O
[ 7 ] >  s c a l e  4  7 . 7 3 9 7  1 . g 2 G I
[ B ] >  s c a l e  5  1 . 7 3 9 1  7 . 9 2 6 I
[9] > ast<

Here the load command load.s the network weights f}om weigh ts . OTT , single spec-

ifies the name of the data file containing the I-V spectra to be identified (e.g. experimental

data), and the ask command runs the network and gives the network's results.



135

L.7 Command Reference

al -1oc

Allocates memory for the network. The memory allocated is basecl on the number of input,

hidden, and output nodes currently defincd (environment variables inputs, hidden, and

outputs. The memory is dynamically allocated on the heap.

anal-yze

Analyze a network fiom its training data. The analyze commancl reads the number of

inputs, outputs, and structures liom the training file. It then loads network weights

fiom weightf i le. Finally, i t  shows each structure in anlinf i le to the network and

compares the nctwork's outputs to thc cxpccted oLttputs in the training tJata. The statistics

on the flnal results are sent to the lllc deflned by the environment variable anl-outf ile.

ask

Asks a trained network to process input. Shows the file defined by cnvironment variable

single to the network, runs the network, and displays its outputs.

debeam

Separate dataset into individual beams. The flle definecl by the environment variable

f ormatted contains the LEEDNET-fbrmat I(V) data, variable beams should be set to the

number of sepat'ate beams in each spectrum, and variable inputs should be set to the
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total number of points in each spectrum. Each I(V) spectrum is divided into beams equal

data sets; the output files are named beam. nnn.

dump

Dump network weights. The current values of all network weights are dumped to the file

whose name is given by the environment vatriablc dumpf ile.

dw

Display a single network weight. The command syntax is: dw vlw i j where v asks to

display an input-to-hidden weight; w asks to display a hidden-to-output weight; and ij

are the weight indices.

exi t

Quit LEEDNET. The exit and quit commands are equivalent.

format

Format data into LEEDNET format. I(V) data is re-fbrmatted fiom its original format into

the format used by LEEDNET. Several different formatting functions may be available;

they are selected using the environment variable function. (original -+ f ormatted)



t37

help

Help on LEEDNET commatnds. Type help for a list ol available cornmands. Type help

cmd for detailed help on command "cmd". Type help env to display help on environment

variables.

l-oad

Load network weights. Network weights are loaded fiom the flle defined by environment

variable weightf ile. The numbcr of input nodes, olrtput nodes, and structures (variables

inputs, outputs, and structures) wi l l  a lso be loaded.

mem

Display memory usage report. Type mem to display thc currcnt nctwork memory usage.

Type mem (inputs) <hidden> <outputs> to display the memory that would be

required for a network of the specifiecl number of input, hidden. anci output nocles.

merge

Merge several data files together. The merge command will prompt for the name to be

given to the output file. It will then ask lbr the names of the input files, each of which

should contain one structlrre (created, for example. by the separate conmand). Enter a

carriage return by itself after the last file name is entered. When done, manually update

line 3 of the output file (total number of structures).
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plot

Generate I(V) plot clata. The file given by tlie environment variable f ormatted is bro-

ken into spectra for individual strlrctLrres, ancl I vs. E clata is saved into files named

struct.nnn. The data in each file is in ASCII format and is suitable fbr plotting with a

spreadsheet program.

prune

Prune points from a clata set. The clata file spccificd by the environment variable

formatted is "pruned" by keeping only cvery n-th point, where n is given by the en-

vironment variable skip. The resr-rlt is saveci in lhc file specified by the envir6nment

variable prune. (formatted -+ pruned)

qur.t

Quit LEEDNET. The exit and quit commancls arre equivalent.

randomize

Initialize random number gcnerator fiom system time.

rebeam

Combine data sets for individual structures into one file. The user is prompted fbr the

names of the files containing the individual beam clata, and the beam data is combined

into a single file whose name is specified by the beamoutf il-e environment variable.
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resume

Resume a training run. To resume a training run. type: set weightfile=<weight filename>

set resumeepoch=<epoch number> resume

SAVE

Save network weights. Network weights are saved to the file defined by environment

variable weightf i1e. The number of input nodes, output nodes, and structures (variables

inputs, outputs, and structures) wil l  also be saved.

sca le

Display or set network output scaling constants. Type scale with no arguments to dis-

play the current values of al l  scaling constants. Type scale <n> <tmin) (tmax)

[<smin> <smax>] [n] to calculatc and save scaling constants fbr or,rtput <n> for

true values ranging between <tmin> and <tmax>. The optional minimum and max-

imum scaled values <smin> and <smax> default to 0. I and 0.9, respectively. If an

n is specified, the scaling is calculated but not stored. Type scale {n) <val-ue> to

perform true-+scaled and scaled-+true conversions of <value> lor output <n>.

separate

Separate data in a data set. A single structure is isolated from the data set specified by

the environment variable f ormatted. The environment variable sepnum should be set to

the number (starting from 0) of the strLlcture to be isolated. The separate command will



140

then place the spectrttm for that structr-rre into the file whose name is given by the single

variable, and the remainin,g spectra will be placed into the file whose natme is siven bv

the miss ing var iab le.  ( format ted + miss ing,  s ing le)

se t

Set/display environment variables. Type set with no al'guments to clisplay the current val-

ues of all envirclntncnt variables. Type set <varnarne>=<value) to set an environment

variable to a new valuc.

status

Show network training status. The netwolk training status is peroidically stored in the

l ' i le defined by thc environment variablc statusfi le, provided the status variable is

set to l .  The status commancl cl isplays the contents of this f i le.

t rain

Train the network. The fllc specified by the training environment variable is used to

train the network fbr "cpochs" training epochs. Type train [cont] to continue trainins

that has been stopped.

ver

Display LEEDNET version number.
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A.8 EnvironmentVariable Reference

adaptive: Adaptive learning rate f lag ( l=on,0=of0

anlinf iIe: Analysis input file (fbr analyze command)

anloutf il-e: Analysis olrtput file (fbr analyze command)

beamoutf ile: Beam output file (fbr rebeam command)

beams: Number of beams in input (fbr debeam i111d lsba:m)

debug: Debug mode on/off f'lag

delanalyze: Interval (epochs) to servc network weights

delprt: Number of epochs to print msg and save error report

dumpf ile: Network weight dump filc name

epochs: Number of epochs to train the network

errordat: Error vs. epoch output l'ile name

errorl im: Training error l imit

f ormatted: Formatted data file nanrc (LEEDNET format)

function: Selects a lbrmatting lunction lbr f ormat command

helpf i le: Help f i le namc

hidden: Number of network hidden nodes

inputs: Number of network input nodes

kappa: Kappa parameter fbr adaptive learning

missing: Missing I structure file narne (for separate cmd)

mu: Momentum parameter for learning rate

numpts: Number of points in I(V) cLtrve

original: Original data file name (for f ormat command)
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outputs: Number of network output nodes

pause: Training pause (epochs)

phi: Phi parameter fbr adaptive learning

plotf  i le:  Plot data output f i le name

pruned: Pruned data file name (prune command)

resumeepoch: Resume epoch (for resume command)

seed: Seed fbr randonr number generator

seedmult :  Random seed mult ipl ier

sepnum: Nr-rmber of stnrcture to bc isolatcd lor separate cmd

single: [ -structure f  i lc narne (separate and ask cmcls)

skip: Number of points to skip lbr prune commancl

status: Training status on/off flag ( l=on, 0=off)

statusf i le:  Training status f i le nanre

structures: Number of structures in clata sct

theta: Thcta parameter to control avcraging period

training: Training data f l le name

weightf iIe: File name under which to save or load network weights
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Listing of Program LEEDNET. C

/ +  F i l e  L E E D N E T . C

/ *  L  E  E  D  N  E  T

/ *  T h i s  p r o g r M  r m p f e m e n t s  i l  a r t i f r c i a l  n e u r a l  n e t F o r k  t o  r e c o g n l z e

/ *  L E E D  I ( V )  c u r v e s .

/*  This source code is standard ANSI C and should be highLy Forlable

/ *  D a v i d  G .  S i m p s o n

/* Department of Physics

/r  ( tniversi ty of Maryland, Balt imore Corrnty

/* Catonsvi l le,  Haryland

/ *  J u l y  1 0 ,  1 9 9 6

/ *  F i l e s  u s e d

/ t  Source  code:  t /

/ *  leednet .c  Ma in  LEEDNET source  code * /

/ *  Jorna to l .c  Custon  func t ion  to  fo rmat  raw data  to  LEEDNET fo rmat  * /

/ *  l e e d n e t . b  L E E D N E T  h e a d e r  f i l e  + /

/ *  A u x i l l a r y  f i l € :

/ *  l e e d n e t . h l p  L E E D N E T  h e l p  f i l e  ( f o r  " h e L p "  c o m u d )

/ *  o p t i o n a l  i n i t i . a f i z a t i o n  f i . L e s :

/ *  l e e d n e t .  i n i  I n i t i a l i z a t i o n  f i l e

,/* LEEDNET comand swary

/ *  a l loc  AL loca te  menory  fo r  the  ne tsork

/ *  na lyza  Ana lyze  a  ne tvork  f rom i ts  t ra in ing  da ta

/ *  ask  Ask  a  t ra ined ne tvork  to  p rocess  input

/ *  debe i l  Sepuate  da ta  se t  in to  ind iv idua l  bems

/*  dump Dwp net ro rk  ve igh ts

143
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dw DispLay  ne twork  Be igh t

€XJ. t  QUi t  LEEDNET

fomat  Re- fomat  da ta  to  LEEDNET fo rmat

he lp  He lp  on  LEEDNET comi lds

load Load ne t ro rk  we igh ts

men D isp lay  memory  usage rePor t

merge Merge da ta  f i les  together

p l o t  G e n e r a t e  I ( V )  p l o t  d ^ r a

prune Prune po in ts  f rom a  da ta  se t

qu l t  Qt r i t  LEEDNET

randon ize  In i t ra l l ze  redom number  g€nera tor  f ron  sys ten  ! im€

rebem Re assemble  da ta  se t  f ron  ind iv idua l  bems

res t rne  Resme a  t ra in ing  run

save Save ne t ro rk  [e igh ts

sca le  Se l /d isp lay  ne t ro rk  ou tpu t  sca l ing  cons tan ts

separa te  sepuate  da ta  1n  a  da ta  se t

se t  Se i /d isp lay  env i roment  var iabLes

s ta tus  Sho,  ne tvork  t ra in rng  s ta tus

t ra in  Tra in  a  ne tFork

ver  D ispLay  LEEDNET vers ion  nMber

/ .  V e r s i o n  H i s t o r y  ( A b b r e v i a t e d )

/ .  .  - - - - - . .
0 0 a  0 r i g i n a l  v e r s i o n

04a Changed sca f ings  to  a r rays  to  suppor t  10  separa te  s , ra l lngs

04b Added r i lge  check ing  to  above (1  9 ) .

0 4 c  A d d e d  " s c a l e "  c o m i l d  t o  l e e d n e t . i n i .

04d Added SEEDMULT env i ronnent  var iab fe

04e Added fo rmat  func t ion  #7

04f  Added fo rmat  iunc t i .on  #8

04S Added neu fo rmat  func t ion  EB

o 4 h  D r e s s e d  u p  ( m o r e  c o m m e n t s  & c . )  f o r  d l s s e r t a t l o r )

" I o r n a t "  l r l c s  e r c c p L  f ^ r n a i 0 1  l o r  l , r o v r L y .

*/
Ramoved a l l  + /

4 /

*/

/+ #includes

s i n c l u d e  < s t d i o  .  h >
S i n c l u d e  < s t d l i b - h >

S i n c L u d e  < t i m e .  h >
#include <math.h>

# i n c l u d e  < s t r i n g . h >

#include <ctype.h>
f i n c l u d e  " l e e d n e t .  h "

/ *  s r a d a r d  i / o  * /

/1  s tandard  f ib ra ry  x /

/ *  t i m e  f u n c t i o n s  * /

/ |  math  func t ions  * /

/ *  s t r i n g  f u n c t i o n s  i /

/ *  charac ter  func t ions  * /

/ *  l e e d n e t  s p e c i f i c  d a f r n i t i o n s  * /

/ *  so f tware  vers ion  number  * /

/ *  num o f  cnd  par i le te rs  +  1  * /

/ *  s ize  o f  env i ronnent  l ine  s t r  * /

/ *  s i z e  o f  c m d  l i n e  * /

/ r  F t t F . t  i v F  t h f r r r r v  . /

/ t  s i z e  o f  s c a l i n g  a r r a y s  * /

# d e f i n e  V E R S I o N  "  1 . 0 4 h '
#def ine CMDSIZE 6
#def i .ne ENVLINE 31
#def ine CMDLNSZ 80
# d e f i n e  I N F I N I T Y  1  . 0 e + 3 0 ;
#def ine SCALINGS 10

/  *  * +  *  * *  *  * *  *  *  * * *  *  *  1 *  *  *  *  *  * *  *  *  * * *  *  *  * *  *  *  * +  *  *  *  *  *  * *  *  *  * *  * *  *  *  * *  * * *  *  r  r  +  r  *  *  *  * *  *  *  *  * * * *  *  *  * /

/ *  macros  * /

/* */
/ *  These func t ioD l i ke  macros  are  used to  access  the  dynmrca lLy  a f foca ted  * /
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# d e f i n e  X ( i )
# d e f i n e  V ( i , j )
# d e f i n e  Z  I N ( i )
# d e f i n e  Z ( i )
# d e f i n e  U ( i , j )
# d e f i n e  Y _ I N ( i )
# d e f i n e  Y ( i )
#def ine YY(i .)
# d e f i n e  T ( i )

* ( x + i )
* (v+ (  i*  (hidden+1 ) )  +j  )
* ( z  l n + i )
* ( z + i )
* (w+ ( i*  (outputs+1 ) )  +j  )
* ( y  i n + i )
*  ( y + i )
*  ( y y + i )
*  ( t + i )

# d e f i n e  D E L T A  I N  J ( i )  * ( d e l t a  i n  j + i )

# d e f i n e  D E L T A  J ( i )  * ( d e t t a  j + i )

# d e f i n e  D E L T A  K ( i )  * ( d e l t a  k + i )
# d e f i n e  D E L  V ( i , j )  * ( d e l  v + ( i * ( h i d d e n + 1 ) ) + j )
# d e f i n e  D E L - W ( i , j )  * ( d e 1  v + ( i * ( o u t p u t s + 1 ) ) + i )
# d e f i n e  F  V ( i , j )  * ( f  v + ( i * ( h i d d e n + l ) ) + j )
# d e f i n e  E  V ( i , j )  * ( e  v + ( i * ( h i d d e n + l ) ) + j )

# d e f i n e  F  l , l ( i , j )  * ( f  w + ( i * ( o u t p u t s + 1 ) ) + i )
# d e f i n e  E  l . l ( i , j )  * ( e  r + ( i * ( o u t p u t s + l ) ) + j )

f d e f j . n e C , W ( i , j )  * ( c ' + ( i * ( o u t p u t s + l ) ) + j )

# d e f i n e  p ( i )  * ( p + i )

f d e f i n e  Q ( i )  * ( q . i )

# d e f i n e  T A R C E T ( i )  * ( t a r g e t + i )

i l d e f i D e  T R A I N I N G - S T R U C T ( i , j )  * ( t r a i n i n g  s t r u c t + ( i * o u t p u t s ) r  j )

/ * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * /

# d e f i n e  C _ V ( i , j  ) +  ( c _ v + ( i *  ( h i d d e n + 1 )  )  + i  )

/ *  g loba l  var iab les

l o n g  i ,  j ,  k ,  m ,  e x ;
short  done = O;
long cndnun = 0;
c h a r  * c p ,  * c q ;

l o n g  i n p u t s ;
long hidden;
Iong outputs;
long funct ion;
long epochs;
long delualyze;
L o n g  d e l p r t ;
f loat mu;
f foat kappa;
f l o a r  p h i ;
f l o a t  t h e t a ;
f loat ayISCALINGS]={

1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . O , 1 . 0 , 1 . 0 , 1 . 0 1 ;
f l o a t  b y I S C A L I N G S I = {

o  .  o  ,  0  -  0  , 0  .  0  ,  0  .  o  ,  o  .  0  ,  o  .  o  ,  0  .  0  , 0  .  0  ,  0  .  0  ,  0  .  o )  ;
f l o a t  e r r o r ;
double nen;
short  resune f lag = 0;
long start  epoch;
i n t  s e e d ;
long nunpts;
l o n g  s t r u c t u r e s ;
long sepnm;
long skip;
short  status;
short  adapt ive;
L o n g  p a u s e ;
l o n g  b e m s ;
r u n B  r E r u , E s P w ! ! ,  i

f loa t  e r ro r l im;

f loa t  seednu l t ;

chd  l ine  [20O]  ;

ch i l  cnds t r ICMDSIZE]  ICMDLNSZ]  ;

chd  da f i lenme [80 ]  ;

ch i l  env-var IENVIR0NMENT] IENVLINEI  =  {

/*  loop counters + /

" o r i g i n a 1 " ,
" f  o m a t t e d " ,

" t r a i n i n g " ,
" e r r o r d a t " ,
" d u m p f i l e " ,

/ *  1  + /

/ *  2  * /

/ *  3  * /

/ *  s  * /
/ *  6  * /

/ *  o = n o t  d o n e , 1 - d o n e  v i t h  l e e d n e t * /

/ *  commd mmber  ( fo r  p ronpt )  * /

/ *  c h a r a c t e r  p o i n t c r s  * /

/ .  , ' , , n h ^ -  ^ r  ' r n , , '  n n d F s  . /

/ *  nunber  o f  h idden nodes * /

/ *  nunber  o f  ou tpu t  nodss  + /

/ *  da ta  conv  func t ion  number  * /

/+  number  o f  epochs  to  teach * /

/ *  nun o f  epochs  lo  anaLyze * /

/ *  n u m  o f  e p o . h s  l o  p r l n L  m c s s a g c . /

/ *  nomentum ra te  fo r  learn ing  * /

/ *  mount  to  inc r  fearn ing  ra te  * /

/ *  fac to r  to  mu l t ip ly  fearn  ra te  * /

/ *  c t r l  t ime per iod  o f  averag ing  * /

/ *  ou tpu t  l i .near  sca l ing  coef fs  + /

/ *  ou tpu t  cons t  sca l ing  coef fs  4 /

/ *  ne tuork  e r ro r  * /

/ *  a r r a y  n e n o r y  u s e d  ( b y t e s ) ;  * /

/ *  l= resuna a  run  * /

/ r  " '  a r r  F n ^ . h  n r ' r h c r  . /

/ *  seed fo r  rand nw genera tor  * /

/ +  n , ' -  n f  n n i r r "  i r  ' ( v )  r r r r v o  . /

/ *  nun s t ruc tu res  ln  da ta  se t  * /

/ *  s t ruc tu re  n rm to  ox t rac t  + /

/ *  in te rva l  to  sk ip  p runed da ta  * /

/ .  s t . a t  r s  ^ n l o f  |  ' l a p  r /

/ *  adapt ive  learn ing  ra te  f lag  + /

/ *  t ra in ing  pause (epochs)  * /

/ *  nunber  o f  beams in  input  * /

/ r  r F . , , r F  F n o . h  f l r n h F r  - /

- /
/ +  r ^ \ d ^ r  s p P d  Y r l t i h l  r p r  , /

/ *  1= termina l  i .npu t ,  0 - f1 Ie  input * /

/ {  inpu t  L ine  x /

/ *  commd s t r ing  & parms + /

/ *  de lana lyze  f i fenme + /

/ *  env i roment  var iab les :  * /

/ *  o r ig ina l  da ta  f i le  nme x /

/ *  fo rmat ted  da ta  f i le  nme * /

/ *  n l s s i n g  1  s t r u c t  f i l €  n m e  * /

/ *  1  s t r u c t u r e  f i l e  n m e  * /

/ +  p r u n e d  d a t a  f l l e  n m e  * /

- /
. , c  o ^ ^ - L  f , r 4  r a a o  + /

/ *  dump f r le  nme * /
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/ *  I  * /

/ *  1 0  , /

/ *  I L  * /

/ *  1 2  * /

/ *  1 3  * /

/ *  1 4  * /

/ *  I s  * /

/ *  1 6  , /

/ *  1 7  * /

/ +  1 e  * /

/ *  I s  * /

/ *  2 0  * /

/ *  2 r  * /
/ *  2 2  * /

/ *  2 3  * /

/ *  2 4  ' /

/ *  2 s  * /

/ *  2 6  * /

/ +  2 7  * /

/ *  2 8  * /

/ *  2 s  * /

/ *  3 0  * /

/*  31. ! /

/ r  s 2  t /

/ r  s 3  * /

/ *  3 4  * /

/ r  3 s  + /

/ *  s 6  * /

/ *  3 7  + /

/ *  3 A  * /

h p l n  f i l p  n ^ n p

p lo t  da ta  f  i l e  nme

number  o f  inpu t  nodes

nunber  o f  h idden nodes * /

nunber  o f  ou tpu t  nodes  * /

da ta  conv  func t ion  nMber  * /

n , , n  ^ f  a h ^ . h c  f ^  r o > . h  * l

nun o f  epochs  to  p r t  nessage* /

moment rn  ra te  fo r  learn in6  r /

m t  t o  i n c r  l € a r n i n g  r a t e  t /

fac to r  to  nu l t  le i ln ing  ra te r /

c t r f  t ime per rod  fo r  a rg ' iLe* /

saved n€ t  we igh ts  f iLe  nme * /

seed fo r  rand hm genera tor  * /

n u n  o f  p o i n t s  i n  i ( v )  c u r v e  * /

n u n  s t r u c t u r e s  r D  d a t a  s e t  * /

s t r u c t u r e  n M  t o  e x t r a c !  t /

n u m  o f  p o i n i s  t o  s k r p  d a t a  r /

t r a i n j n g  s t a t u s  o n / o f t  f l a g  + /

t ra in ing  s ta tus  f iLenme * /

adapt ive  learn ing  ra te  f \ag  * /

t r a i n i n g  p a u s e  ( e p o c h s )  * /

t r a r n l n g  e r r o r  l l m i i
a n a l y s i s  u p u t  f i l e
d a f y s i s  o u t p u t  f i l e
rebei l  output f i fe

debug mode on lo f I

Dumber  o f  beans  iD  input  ! /

n u n  o f  e p o c h s  t o  i l a f y z e  + /

resume ePoch nunber

random seed ml l t ip f ie r  t /

j ;

char  env-va lue IENVIRONMENT]  TLINESIZEI  =  I  /+  ew var iab le  va lucs  de fau l ts ' /

/ "  5  t r a l n i n g  ! /  / a  t r a i n i n g  d a t a  f i l e  n m e  1 /

/ *  6  e r r o r d a t  t /  / t  e r r o r  v s  e p o c h  f i l €  n a n e  ' /

" l e e d n e t . d m p " ,  / *  7  d u n p f i l e  * /  / t  w e l g h t  d u m p  f l L e  n a n e  ' /

" l e e d n e t . h l p " ,  / *  8  -  h e l p f i l e  1 /  / '  h e l p  f i l e  n m e

"  i v , d a t "  ,

" i v . f n t " ,

" 1 " ,

o r i g i n a l  * /  / *  o r i g i n a l  d a t a  f i l c  n m e  * /

fo rmat ted  r /  / *  fo rna t ted  da ta  f i le  name * /

n i s . i n s  . /  / .  r i s s i n p  I  s t r u . t  l i l e  n a n e  ' /

s i n g l e  * /  / 1  1  s t r u c t u r e  f i l e  n a n e  x /

p r u D a d  * /  / *  p r u n e d  d a t a  f j l c  n m e  1 /

"  1 0 0 "  ,

" 3 " ,

'20" ,

" 0 . o " ,

, 0 .  5 '  ,

" i v . u g t " ,
" 1 " ,
"  1 6 0 '  ,

/ *  2 6  s t a t u s  * /  / *  t r a i n i n g  s t a t u s  o n / o f f  f l a g  * /

" l e e d n e ! .  s t a " ,  / *  2 7  s t a t u s f l l e  * /  / r  t r a i n i n A  s t a t D s  J i L e n m e  ' /

/ "  2 A  a d a p t l v e  a /  / *  a d a p t i v e  l e a r n l n g  r a t e  f l a g  + /

/ , 2 9  p a u s e  r /  / '  i r a r n i n g  p a u s e  ( e p o c h s )  * /

/ *  30  -  debuc  ' /  / *  debug node on lo f f  4 /

/ *  3 I  bems * /  / *  nunber  o f  beams in  input  * /

/ ' 3 2  e r r o r l r m  r /  / .  t r a r n i n s  e r r ^ r  l r m i t .  a /

" d a l y z e . i n " ,  / *  3 3  a n l i n f i l e  * /  / *  e a L y s i s  i n p u t  f i l e

" i la lyze.out",  /+ 34 - a\ laf i t i le +/ /*  malysis output f i le

/ *  10  inputs  * /  / ,  nunber  o f  inpu l  nodes  * /

/ *  1 1  h i d d e n  * /  / 4  n u n b e r  o f  h i d d e n  n o d a s  * /

/ *  1 2  o u t p u t s  ' /  / *  n u m b e r  o f  o u t p u t  n o d e s  x /

/ *  1 3  f u n c i i o n  * /  / *  d a t a  c o n v  f u n c t i o n  n r u l b e r  + /

/ *  1 4  e p o c h s  4 /  / *  n u m  o f  e p o c h s  ! o  l e a c h  * /

/ *  15  -  de lp r t  t /  /+  Dun o f  epochs  to  p r t  nessage ' /

/ *  C  p l o r f i l e  * /  / +  p l o t  d a r a  { i 1 e  n a m e

/ i 1 6 - m u 4/  /4  momentm ra te  lo r  learn ing  * /

/+  17  kappa + /  /1  amt  to  inc r  Learn ing  ra te  * /

/ +  1 a  p h i . /  / .  f a ,  [ o r  L ^  n r i l t  I F a r n i n S  r a t € + /

/ *  1 9  t h e t a  * /  / *  c t r l  t i m c  p e r r o d  f o r  a v g , i n g * /

/ *  2 0  w e r e : h t f i l e  * /  / *  s a v e d  n e t  s a r g h t s  f i l e  n m e  r /

/ i  2 1  -  s € € d t /  / '  s € e d  f o r  r a n d  n m  g e n e r a t o r  * /

/ .  / 2  n m p l s  + /  / ,  n u m  o f  p o r n L i  r n  r ( v )  ,  r r r v +  . /

/*  23 slructures */  /*  nun structures rn data set * /

l t  24 sepnun */  /+ slructure nM to extract * /

/ *  2 5  -  s k r p * /  / t  n u m  o f  p o i n t s  t o  s k i p  d a t a  * /

"  1  . 0 e - 0 4 "

) ;

F I L E  * s t a t f P ;

F I L E  r t e s t f P ;

FILE +cmdfp;

/ *  3 5  -  b e m o u t f i l e  * /  / *  b e m  o u t p u t  f r l e  x /

/ *  36  de lea lyze  a /  / *  nun o f  epochs  to  aDafyze  * /

/ t  3 7  r e s u e e p o c h  t /  / *  r e s u m e  e p o c h  + /

/ *  38  -  s€€dru l t  + /  /1  randon seed mul t ip l ie r  r /

/*  t raining input l iLe polnter */

/*  error output f i le pointer */

/ *  s t a t u s  o u t p u t  f r l e  i /

/ *  t e s t  i n p u t  J r l e  p o l n t e r  a /

/a batch comand rnput f i fe ptr  t /
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FILE *dMpfp ;

F I L E  ' a l i n f p '

F ILE *a lou t fp ;

F ILE *dd l fp ;

f l o a t  + x ;

f l o a t  * v ;

f l o a t  * z  i n ;

f loa t  *z ;

f l o a t  * v ;

f l o a t  * y _ i n ;

f l o a t  * y ;

f L o a r  * y y ;

f L o a t  * t ;

f L o a r  * d e l t a  r n  j ;

f l o a t  ' d € l t a - j ;

f l o a t  * d € l t a  k ;

f L o a t  * d e 1  v ;

f l o a t  * d e l  w ;

f L o a t  + f  v ;

f l o a t  * €  v ;

f l o a t  * c - v ;

f l o a t  * f _ c ;

f l o a t  * e  c ;

f l o a t  + c  s ;

f l o a t . p ;

f l o a t  r q ;

f l o a t  * t a r g e t ;

char  no t  ready l ]  =

"  comand not  ye t  qork ing \n" ;

s t ruc t  tn  *sys t ime;

t i m e - t  e n c o d e d  t i m o ;

f l o a t  r n s t

/*  dump output f i le pointer */

/ t  i l a l y s r s  i n p u t  f i l e  p o i r t € r  i /

/ t  a n a l y s i s  o u t p u t  f i l e  p o i n t e r  * /

/*  delanalyze f i le pointer t /

/*  input neurons
/ *  inpu t  to  h idden le lgh ts  i /

/ *  h i d d e n  D e u r o n s  i /

/ *  s r g m o i d - l i n r t e d  h i d d e n  n e u r o n s * /

/ *  h i d d e n  t o  o u t p u t  v e l g h t s  ' /

/ *  ou tpu t  neurons  ' /

/ *  s lgno id -L ln i ted  ou tpu t  n€urons* /

/ *  unsca led  ne tsork  ou tpu ts  * /

/ *  ta rge t  vaLues a t  each ou tpDt  * /

/ *  t r u e  o r r t p u t s

/ *  s y s t e n  t i m e
/ *  e n c o d e d  s y s t e m  t r m e

/* funct i .on prototypes

v o i d  a l l o c ( v o i d ) ;

v o i d  d a l y z e ( v o i d ) ;

v o i d  a s k ( v o i d ) ;

v o i d  d i s p l a y  w e i g h t ( v o i d )  ;

v o i d  d e b e u ( v o i d ) ;

v o i d  d u n p  s e i g h t s ( v o r d ) ;

e x t e r n  v o i d  f o r n a t 0 l ( v o i . l )  ;

v o i d  h e l p ( v o i d ) ;

v o r d  r n . i t ( v o i d ) ;

v o l d  l o a d _ e n v ( v o i d ) ;

v o i d  l o a d  c e i g h t s ( v o i d ) ;

v o i d  n e n o r y ( v o i d ) ;

v o i d  m e r g e ( v o i d ) ;

f l o a t  n e t _ s i g m o i d ( f l o a t  x ) ;

v o i d  n e t _ u p d a t e  r e l g h t s  ( v o i d )

v o i d  n e t  z e r o - d e l s  ( v o i d )  ;
v o l d  n e t r o r k ( i n t  l e a r D ) ;

v o i d  p l o t _ d a t a ( v o r d ) ;

v o i d  p r u e  ( v o i d )  ;

f l o a t  r a n d L ( v o i d ) ;

i n t  r a n d 2 ( i n t  n ) ;

f l o a t  r a n d 3 ( i n t  n ) ;

f l o a t  r a n d 4 ( v o i d ) ;

v o i d  r a n d o n i z ( v o i d ) ;

w ^ i i  Y o h o : n r v ^ l i )

v o i d  s a v e _ c e i g h t s ( v o i d )  ;

v o i d  s c a l e ( i n t  v e r b o s e ) ;

v ^ i i  c o n ' 1 2 + a a v ^ l i l

v o l d  s o t ( v o i d ) ;

v o i d  s h o r  s t a t u s ( v o i d ) ;

v o i d  t r a l n ( v o i d ) ;

/ r  a l L o c a t e  n e n o r y

/ *  per fo rm er ro l  ana lys is

/ *  ask  t ra ined ne twork

/ *  d isp lay  we igh t

/ *  s e p  d a t a s e t  i n t o  b e m s

/ *  d r ) m p  l e i g h t s

/ *  f o r m a i  f u n c i i o n  O 1

/*  d lsp lay  he lp  on  ccsmands

/ *  i n i t i a l i z e  d a t a

/ .  t  o a d  
" n v  

r  r  o m e n  t  d L  v a r  j . a l r l e  j

/ *  l o a d  n e t r o r k  u e i g h t s

/ *  d r s p l a y  m e m o r y  u s a g e

/ t  n e r g e  d a t a  f i l e s  t o g e t h e r

/ *  s i g n o r d  f u n c t i o n

/ *  update  ne tuork  u€ igh ts

/ +  z e r o  d e l  v [ ]  a n d  d e l  w [ ]

/ *  ruD the  ne tuork

/ *  c t e a t e  p f o t  d a t a  f r f e s

/ *  p rune da ta

/ '  random f loa t  be tveen 0  1

, / *  randon in t  be t {een I  n

/ *  random f loa t  be tse€n 1  n

/ *  r a D d o n  f l o a t  - l  t o  + 1

/ *  i n i t  r m d  n m  g e n e r a t o r

/ *  n e r g e  b e m s  t o g e t h e r

/ *  save ne tvork  ue igh ts

/ *  co f tpu te  sca l i t rg
/ r  < - ^ . r . " . i ' , - -

/ *  p rocess  se t  comnand

/*  shov  t ra ln ing  s ta tus

/ *  t r a i D  t h e  n e t l o r k
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/ *  * *  * * *  *  * *  *  * *  *  *  * *  *  *  * *  * *  * *  * *  * * *  *  *  *  *  *  *  * *  * *  * * *  *  *  * *  t *  *  *  * *  *  *  * *  *  * *  *  *  * *  * *  *  *  * * *  *  *  *  *  * *  *  /

in t  na in ( in t  i lgc ,  char  *a rgv [ ] )

{
/*------- - */

/ *  m a i n o

/* in i t ia l ize the progrm

i f  ( a r g c  >  1 )

t
i f  (  !  s t r c m p ( a r g v [ 1 ] ,  " t e r m i n a l " )  )

tern input -  1;
e l s  e

tern input = 0;

)
else

term_input = 1;

p r i n t f ( "  L E E D N E T  V e r s i o n  7 , s \ n " , V l i R S I 0 N ) ;
i n i t  O  ;
a L l o c  (  )  ;

i f  ( ! t e r n  i n p u t )

t
s t r c p y ( 1 i n e ,  a r g v [ 1 1  )  ;

s t r c a t ( 1 i n e ,  " . s c r " ) ;

i f  (  ( c m d f  P - f  o p e n ( r i n e ,  " r "  )  ) = = N U L L )

{
p r i n t f  ( "  I n p u t  f r o m  t e r m i n a l . \ n " )  ;
tern lnPut = 1;

)
e L s e

{

/ *  i f  an  argrment  i s  on  cmd l ine  * /

/ *  i f  " t e r m i n a l "  a r g M e n t  g i v e n . . * /

/ *  , . then  ge t  inpu t  f ron  te rn ina l * , /

/ *  e lse  ge t  inp t r t  f ron  f i le  + /

/ *  i f  n o  c m d  l i n e  a r g u n e n t . .  * /

/ *  . . t h e n  g a t  r n p u t  f r o n  t e r n i n a l * /

/ *  p r in t  so f tware  vers ion  nwber  * /

/ *  i n i t i a l i z e  d a t a

/ *  a l loca te  nemory  * /

/ *  i f  g e t t i n g  c m d s  f r o n  a  f i l a  * /

/+  open cmd rnput  f i le  + /

p r i n t f ( "  I n p u t  f r o m  f i l c  7 , s \ n " ,  l i n e ) ;

tern input = 0;

I

d o {
i f  ( term input)

{
p r i n t f  ( "  [ 7 d ] >  " , + + c n d n m )  ;
g e t s ( L i n e ) ;

)
e l s e

{
f  g e t s  ( 1 i n e ,  L I N E S I Z E , c n d f  p )  ;

I i n e l s t r l e n ( I i n e )  1 l  =  ' \ 0 ' ;

)

/ *  s t a r t  o f  m a i n  l o o p  * /

/*  i f  gett ing cnds fron terninal t /

/*  lncr cmd nunber & pr int  pronpt*/

/*  read in input f ine */

/ *  g e t t i n g  c m d s  f r o m  f i l e

/ *  read in  input  l ine  + /

/ *  lop  o f f  f ina ]  newl ine  char  * /

/ *  parse  the  en tered  comand l ine

c p  =  l i n e ;
f o r  ( i = 0 ;  i < C M D S I Z E ;  i + + )

{
c q  =  c n d s t r l i ] ;

" h i 1 .  
( ( * c p = = '  ' )  |  1  ( * c p = = ' = ' ) )

cpf i ;

/ r  ^ ^ r n r  . n  r .  s . : r r  ^ f  r . p  . /

/ r  ^ ? r c o  i  h a  '  n n " '  
'  

i  n p  . /

/ *  p o i n t  c q  t o  s t a r t  o f  c n d  s t r  * /

/ *  s k l p  p a s t  s p a c e s  m d  =  * /

v h i t e  ( ( * c p ) & & ( * c p ! = '  ' ) & & ( * c p ! = ' = ' ) )  / *  s c m  i n p u t  t r n t 1 L  \ 0  o r  s p a c e  i /

*cq++ =  *cp++;  / *  copy  charac ters  to  cmd s t r ing  * /

*cq  =  , \O '  
;  / *  te rmina te  cmd s t r ing  shen done* /

)

/* -------------- - */
/ *  see  ch ich  comand {as  en tered  dd  process  i t .  + /
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i f  (  |  s t r c m p ( c m d s t r  t O l  ,  " a ] ] o c "  )  )  / *  * * *  a l  t o c  * * *  * /

al1oc O ;

€ l s e  i f  ( ! s t r c n p ( c m d s t r [ 0 ] .  " a n a t y z e " ) )  / *  * * *  i l a l y z e  * * *  ' /

i la]yze O ;

€ ] s e  i f  ( l s t r c m p ( c n d s t r [ 0 ] , " a s k " ) )  / *  * * *  a s k  * * *  * /
a s k o ;

e t s e  i f  ( l s t r c n p ( c m d s t r f o l , " d e b e m " ) )  / *  * * *  d e b e m  r r *  + /
d e b € m O ;

e l s e  i f  ( l s t r c d p ( c n d s t r [ 0 ] , " d M p " ) )  / *  * * *  d u m p  * ' *  ' /
d$p_ceights O ;

e l s e  i f  ( l s t r c n p ( c m d s t r l o ] , " d ! " ) )  / *  * * *  d w  * t *  4 /
d i s p l a y  { e i g h t O ;

e l s e  i f  ( ! s t r c m p ( c m d s t r [ 0 ] , " e x r t " )  |  I  / t  * * *  e x i t / q t r i t  * * *  ' /
!  s t r c m p  ( c n d s t r  [ 0 ] ,  " q r r r t "  )  )

e l s e  i f  ( ! s t r c n p ( c m d s t r [ o ] , " f o r m a t " ) )  / *  * * *  f o r m a t  1 * *  * /
s r i t c h  ( f D n c t i o D )

{
c a s e  1 :  / *  a d d  a d d i t i o n a l  c a s e s  h e r e . .  * /

f o r m a t o l o ;  / *  - . f o r  n o r e  f o r n a t  f u n c t i o n s  * /

o r e u ;

d e f a u l t :

p r i n t f ( '  F o r m a t  f u n . t  r o n  l ( d 7 , s ' ,

f u n c t i o n ,

"  n o i  d e f i n e d - \ n " ) ;

)
e l s e  i f  (  !  s t r c m p ( c m d s t r  t o l  ,  " h e l p "  )  )  / *  * * *  h e l p  * + *  * /

he lp  O ;

e l s e  i f  ( ! s t r c m p ( c n d s t r l 0 l , " l o a d " ) )  / +  * a *  l o a d  * * *  * /

l o a d  i e i g h t s O ;

e l s e  i f  ( ! s t r c n p ( c n d s t r [ o ] , " n e m " ) )  / *  4 /

memory( /  ;

e l s e  i f  ( l s t r c n p ( c m d s t r [ 0 ] , " n e r g e " ) )  / *  * * *  n e r g e  ] * *  4 /

n e r g e ( ,  ;

e L s e  i f  ( ! s t r c n p ( c n d s t r [ O ] , " p f o t " ) )  / 4  * * *  p l o t  t * *  * /

p l o t _ d a t a O ;

e l s e  i f  ( l s t r c n p ( c n d s t r l o ] , " p r u n e " ) )  / *  * * *  p r u n e  * * *  * /

Prune ( ,  ;

e L s €  i f  ( ! s t r c n p ( c m d s t r [ 0 ] , " r a n d o m r z e " ) )  / *  * * *  r a n . i o n i z e  * * *  * /

r a n d o n i z ( ) ;

e f s e  i f  ( ! s t r c n p ( c m d s t r t o l , " r e b e m " ) )  / *  * * *  r e b e m  * * *  * /

r e b e m O ;

e l s e  i f  ( ! s t r c n p ( c n d s t r [ 0 ] , " r e s r u e " ) )  / 4  r ' *  r e s D D e  * * *  i /

{
r e s u n e - f l a g  =  1 ;
t r a i n ( ) ;

)
e l s e i f  ( ! s t r c n p ( c n d s t r [ 0 ] , " s a v e " ) )  / x

s a v e  w e i g h t s ( ) ;

€ l s e  i f  ( ! s t r c n p ( c n d s t r t o l , " s c a l e " ) )  / +  * * *  s c a f e  * * *  ! /

s c a l e ( 1 ) ;

e l s e  i J  ( ! s t r c h p ( c m d s t r [ 0 ] , " s e p a r a t e " ) )  / *  * * *  s e p a r a t e  * * *  * /

separa te  (  )  ;

€ l s e i f  ( ! s t r c m p ( c m d s t r [ 0 ] , " s e t " ) )  / r
s e t O ;

e l s e  i f  ( ! s t r c D p ( c n d s t r [ 0 ] , " s t a t u s " ) )  / *  * * *  s t a t u s  * * *  * /
shov_status (  )  ;
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e lse  i f  (  !  s t rcnP (cmdst r  [0 ]  ,  " t ra ln "  )  )

t r a l n O ;

e l s e  i f  (  ! s t r c m p ( c n d s t r [ 0 ] ,  " v e r " )  )

p r i n t f ( "  L E E D N E T  V e r s i o n  % s \ n " ,

V E R S I O N ) ;

e l s e  i f  ( ( ! s t r c m p ( c m d s t r [ o ] , " \ n " ) )  |  |

(  !  s t r c m p ( c m d s t r  [ 0 ] ,  " \ r " )  )  )

{ }
e l s e

pr in t f  (

"  Comni ld  \ "7 ,s \ "  no t  recogn ized\n" ,

cmdst r  [0 ]  )  ;

]  s h i l e  (  l d o n e ) ;

/ 1  .  - - ^ - -  - - t , l  r  ̂ - -

/ *  . . d d  c a r r i a g e  r e t u r n s

/ *  command not  recogn ized

*/

* * *  t r a r n  * * *

/ *  end o f  ma ino

i f  ( ! t e r m _ i n p u t )

f c l o s e ( c m d f p ) ;

r e t u r n  0 ;

)

v o i d  a l l o c  ( v o i d )

t
i n t  s J ;
s t a t i c  c h a r  e r r s t r [ ]  =

"  E r r o r  a l l o c a t i n g  n e n o r y  f o r  \ " " ;

s f  =  s i z € o f ( f 1 0 a t ) ;

/ *  s i z e  o I  I l o a t  * /

/ *  e r r o r  s t r i n g  * /

/ i  I i n r i  s i z c  r f  f l o a t

, / *  f ree  a l l  nemory  cur ren t fy  used by  dyn i l i ca l l y  a l loca ted  ar rays

/* ------------- */

f ree  ( ta rge t )  ;

f r e e  ( q )  ;

f r e e  ( p )  ;

f r e e ( c  c ) ;

f r e e ( e  r ) ;

f r e e  ( f _ r )  ;

f r e e ( c  v ) ;

f r e € ( e  v ) ;

f r e e ( f - v ) ;

f r e e  ( d e l  v )  ;

f ree  (de l -v )  ;

f ree  (de l ta_k)  ;

f r e e ( d e l t a  j ) ;

f r e e  ( d e I t a - r n , j  )  ;

f r e e ( t ) ;

f ree  (yy )  ;

r r e e  ( y )  ;

f r e e  ( y _ r n )  ;

r r e e  ( w )  ;

f ree \z )  i

f r e e ( z  i n ) ;

f r e e  ( v )  ;

f r e e  ( x )  ;

/*----------"- */
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/ *  Nor  a l loca te  nemory  fo r  each o f  the  dynmic  a r rays  on  the  heap.  * /

/ *  In  each case,  p r in t  an  er ro r  message and re tu rn  i f  the  a l loca t lon  qas  * /

/ *  n o t  s u c c e s s f u l  * /

x  =  ( f l o a t  * ) m a l l o c  (  ( l n p u t s + 1 )  * s f )  ;  / *
i . f  (  ! x )

{
f r r n L - f  ( " Z s 7 s \ " \ r " , e I  r  s l  |  .  " x " )  r
r e t u r n ;
)

v  -  ( f 1 0 a t  * ) m a L L o c ( ( i n p u t s + 1 ) * ( h i d d e n + l ) * s f ) ;  / *

i f  ( ! v )

{
p r i n t f  ( " 7 s 7 , s \ " \ D " , e r r s t r ,  " v "  )  ;
teturn;

]
z , i n  =  ( f l o a t  * ) m a l L o c ( ( h r d d e n + l ) * s f ) ;  / *  z  i n

r f  ( ! z  i n )

{
p r r n L I ( " 7 , s 7 . s \ " \ r L " , c r r s t r , " 2  i n " )  r
r e t u r n ;

)
z  =  G l o a r  t ) n a l l o c  (  ( h i d d e n + 1 )  * s f )  ;  / +

i f  ( l z )

{
p r r n t f  ( " 7 s 7 s \ " \ n " , e r r s t r ,  " z " )  i
return;
)

w  =  ( f l o a t  * ) m a ] ] o c ( ( h i d d e n t l ) * ( o u t p u t s + 1 ) * s f ) ;  / *

i f  ( ! w )

{
p r i n t f  ( " 7 s 7 . s \ " \ n " ,  e r r s t r ,  " w " )  ;
return;
)

y  i n  =  ( f l o a t  * ) m a l l o c ( ( o u t p u t s + L ) ' s f ) ;  / t  y  i n

r f  ( ! y  i n )

{
p r i n t f  ( " 7 . s 7 . s \ " \ n " , e r r s t r ,  " y  i n " )  ;
r e t u r n ;

l

y  =  ( f 1 0 a r  * ) n a t t o c ( ( o u r p u t s + t ) * s f ) ;  / *  y
r f  (  ! y )

{
p r i n t f  ( " 7 s 7 . s \ " \ n " , e r r s t r ,  " y " )  ;
r e t u r n ;

)
y y  =  ( f l o a t  * ) m a f l o c ( ( o u t p u t s + 1 ) * s f ) ;  / *  y y
i f  ( ! y y )

{
p r  i n t f ( " 7 s 7 , s \ " \ r , ' , " r r  s t r  ,  ' v y " )  I
return;

]
!  =  ( f l o a t  ' ) n a l l o c ( ( o u t p u t s + 1 ) * s f ) ;  / *  t
i f  ( ! t )

t
p r r n t f ( " 7 . s 7 , s \ " \ n ' . c r r  s t r  , " r  " )  i
r e t u r n ;
]

d e l t a _ i n _ J  =  ( f 1 o a t  * ) m a l f o c ( ( h i d d e n + 1 ) * s f ) ;  , / *  d e L t a  i n  j

r f  ( ! d e I t a , 1 n - j )

{-
p r r n t l ( " ? s 7 . s \ " \ n " . e r r s ! r . " d . l  t a  r n  t ' )  :
return;

)
d e L t a , j  =  ( f l o a t  * ) m a l l o c ( ( h i d d e n + 1 ) * s f ) ;  / *  d e l t a  J
i f  ( l d e l t a  j )

{
p r r  n t f  ( " ? s 7 , s \ " \ D " , e r r s t r , ' d F I t a .  j " )  :
return;
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)
d e t t a  k  =  ( f l o a t  + ) m a t l o c ( ( o u t p u t s + 1 ) * s f ) ;  / *  d e l t a  k  * /

i f  ( ! d e 1 t a  k )

t
p r r n t f  ( " 7 . s 7 s \ " \ n " , e r r s t r , ' . t e l  L a  k ' )  i
return;

)
d e l _ v  =  ( f l o a t  * ) n a L L o c ( ( i n p u r s + l ) * ( h i d d e n + 1 ) * s J ) ;  / *  d e l _ v  * /

i f  ( ! d e 1  v )

t
p r i n t f  ( " 7 , s 7 s \ " \ n " , e r  r s t r ,  " d e l  v " )  :
return;

l

d e l  {  =  ( f l o a t  * ) m a L L o c ( ( h r d d e n + 1 ) * ( o u t p u t s + 1 ) * s f ) ;  / *  d e l  v  * /

i f  ( ! d e 1  F )

{
p r j n t f  ( " 7 . s 7 , s \ " \ n " , e r r s t J , '  d p l  r " )  :

re tu rn ;
j

f _ v  =  ( f l o a t  * ) n a l l o c ( ( i n p u t s + 1 ) * ( h r d d c n + 1 ) * s f ) ;  / '  I  v  * /

i f  ( ! f  v )

{
p r r n t f  ( " 7 . s 7 . s \ " \ n ' . e r r s t r , " f  v " )  :

re tu rn ;
j

e  v  =  ( f l o a t  t ) m a 1 1 o c ( ( i n p u t s + 1 ) * ( h i d d e n + 1 ) * s f ) ;  / *  * /

i f  ( ! e  v )

{
p r i n t f  ( ' 7 . s 7 s \ " \ n " , p r r s r  r ,  " F  v " )  i

]
c  v  =  ( f l o a t  * ) n a ] ] o c ( ( r n p n t s + 1 ) r ( h i d d e n + l ) * s f ) ;  / +  * /

i f  (  !  c - v )

t
p r i n t f  ( " 7 s 7 , s \ " \ n " , e r r s t r ,  " c  v "  )  ;
return;

1

f  '  =  ( f l o a t  * ) m a l l o c ( ( h i d d e n + 1 ) * ( o u t p u t s t l ) * s f ) ;  / *  |  a  * /

i f  (  !  f _ c )

{
p r i n L f  ( " 7 , s 7 , s \ " \ n " , e r r s t r ,  ! I  u " )  ;
return;
)

e  c  =  ( f l o a t  * ) m a 1 1 o c ( ( h i d d e n + 1 ) * ( o u t p u t s + 1 ) * s f ) ;  / *  * /

i f  (  !  e - r )

{
p r i n t f  ( " Z s 7 , s \ " \ n " , e r r s t r , " o  v " )  ;

)
c _ w  =  ( f l o a t  * ) n a l l o c ( ( h i d d e n + l ) * ( o u t p u t s + 1 ) * s f ) ;  / *  c - u  * /

i f  ( ! c  s )

t
p r i n ! f  ( " Z s 7 . s \ " \ n " , e r r s i r , " .  u ' ,  ;
return;

]
p  =  ( f l o a t  * ) m a 1 1 o c ( ( o u t p u r s + 1 ) * s f ) ;  / +  p  * /

i f  ( ! p )

t
p r i n t l  ( " 7 , s 7 . s \ " \ n " .  a r r s l  r , ' p " )  :
return;
I

q  =  ( f l o a t  * ) n a l l o c ( ( h i d d e n + 1 ) r s f ) ;  / *  q  * /

i f  ( ! q )

t
p r r n ! - f  ( " ' / , s 7 . s \ " \ n " . e r r s t r , ' q " )  ;
return;

)
t a r g e t  =  ( f l o a t  * ) m a l L o c ( ( o u t p u t s + 1 ) * s f ) ;  / *  t a r g e t  * /
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i J  (  ! t u g e t )
{
p r i n t f  ( " 7 . s 7 . s \ " \ n " ,  e r r s L r ,  " t d g e t "  )  i
return;
j

p r r n L f ( "  M e m o r y  s u c c e s s f u l l y  a l l o . a l e d . \ n " ) :  / ' s u . c e s s f u l  I '  w P  8 o r  h e r e

/ *  - - - - - - - - - - - -  + /

/*  Now calculate hov much memory re've used for the dynamical ly al located */

/*  arrays, i ld pr int  the result

/ *  i l a l y z e ( )

nem = inputs+l;
n e m  ' -  5 * ( r n p u L s r  l ) . ( h i . l d e n + l ) .
n e n  + =  5 * ( h i d d e n + 1 ) ;
m e m  + =  5 * ( h i d d e n + 1 ) * ( o u t P u t s + 1 )  ;
n e n  + =  7 * ( o u t p u t s + 1 ) ;

p r i n t f  ( "  7 0 . 0 1 f  b y l e s ' , m e m ) ,
i f  ( m e m  <  1 . 0 4 8 5 7 6 e 6 )

p r i n t f  ( " ( 7 , 0 . 2 f  K b )  u s e d . \ n
m e m / 1 0 2 4 . 0 )  ;

e l  s e
pr st l  ("  ( ' / ,O .2{ l ' lh) , rscd .  \n ,

mem/ 1 .  048576e6 ) ;

)

v o i d  a n a l y z e ( v o i d )

{
i n t  s f ;

i n t  s s ;

s ta t i c  char  e r rs t r [ ]  =

"  E r r o r  a l L o c a t i n g  m c m o r y  f o r  \ " " ;

s h o r t  i ,  j ;

f f o a t  n ;

shor t  s t ruc t  num;

f l o a t  d e l t a ;

f  l o a t  + s m 2 ;

f l o a t  * m i n ;

f l o a t  + m a x ;

snor t  *n  n1n;

shor t  *n  nax ;

f  f  oa t  * t ra in ing_s t ruc t  ;

f l o a t  r m s  f i n a l ;

f f o a t  d i s t i l c e ,  m i n  d i s t a n c e ,  t e m P ;

{
p r i n t f ( "  c a n n o t  o p e n  f i l e  z s \ n " ,

env value ITRAINING] )  ;
return;

)
f g e t s  ( 1 i n e ,  L I N E S I Z E ,  t r n f p ) ;
s s c a n f  ( 1 i n e ,  " 7 1 d "  ,  & i n p u t s )  ;
spr int f  (env-value I INPUTS] ,  "  7,1d" ,  inputs )  ;

f g e t s  ( l i n e ,  L I N E S I Z E ,  t r n f p ) ;
s s c a n f  ( l i n e ,  " 7 . 1 d ,  ,  & o u t p u t s )  ;
s p r i n t J ( e n v  v a l u e I 0 U I P U T S ] ,  " 7 l . d " , o u t p u t s )  ;

f g e t s  ( f i n e ,  L I N E S I Z E ,  t r n f p ) ;
s s c a n f  ( l i n e , " 7 , l d " ,  & s t r u c t u r e s )  ;
spr lnt f  (  env-value ISTRUCTURES] ,  "  7, Id "  ,

s t r u c t u r e s l ;

load {eights O ;

/ *  l r r n t  m e m o r y  r r s e d  r n  M b

/ +  s i z e  o f  f l o a t  * /

/ *  e r r o r  s t r i n g  * /

/ *  read ln  nmb€r  o f  inpu t  nodes  * /

/ *  read in  n rmber  o f  ou tpu t  nodes* /

/ *  read rn  nmber  o {  s t ruc tu res  * /

/ *  load  ne tvork  se igh ts  + /
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s f  =  s i z e o f ( J l o a t )  t  /  +  f i n d  s i z e  o f  f l o a i  * /

s s  =  s i z e o f ( s h o r t )  t  / *  f i n d  s i z e  o f  s h o t t  * /

s u m 2  =  ( f l o a t  * ) n a l l o c (  ( o u t p t r t s ) * s f )  i

i i  (  l s M 2 )

{
print f  (  " ' / ,s ' l .s\" \n",  errstr ,  "sum" ) ;

r e t u r n ;
)

m i n  =  ( f  l o a t  * ) m a 1 1 o c ( ( o u t p u t s ) * s f  )  ;

i f  (  !  n i n )

{
p r i n t f  (  " 7 , s 7 , s \ " \ n " ,  e r r s t r ,  " n i n "  )  ;

return;

)
m a x  =  ( f  L o a t  t ) n a l l o c ( ( o ! i p r t s ) * s f  )  ;

i . f  (  I n a x )

{
p r r n t f  (  " 7 s 7 , s \ " \ n " ,  e r r s i r ,  " m a x "  )  ;

j

n - m i n  =  ( s h o r t  * ) m a l l o c ( ( o u t P u t s ) * s s )  ;

i . f  (  ! n  n i n )

{
p r i n t f  ( " Z s 7 . s \ " \ n " , e r r s i r , " n  n r D " )  ;

return;

)
n  m a x  =  ( s h o r t  * ) m a l ] o c ( ( o u t p u t s ) r s s ) ;

1 f  (  !  n - m a x )

{
p r r n t f  ( " 7 s 7 , s \ " \ n " , c r r s t r .  " n  m n x " )  ;

r e t u r n ;

)
t r a i n i n g  s t r t r c t  =  ( f l o a t  * ) n a l l o c ( ( s t r u c t u r e s * o u t P u t s ) ' s f )  ;

i f  (  !  t r a r n i n g - s t r u c i )

t
p r i n t f  (  " 7 s 7 , s \ " \ n " ,  e r r s t r ,  "  t r a i D i n g  s t r u c t ' t  )  ;

r e t u r n ;

)
f o r  ( i = O ;  i < s t r u c t u r e s ;  i + + )

t
f o r  ( j = 0 ;  j < r n P u t s ;  J l + )

J g e t s  ( )  1 n e  ,  L I N E S I Z E  ,  * " r n f P )  ;

f o r  ( j = O ;  j < o u t P u t s ;  J + + )
{
f g e t s  ( l i n e ,  L I N E S I Z E ,  t r n f P ) ;

s s c a n f  ( 1 r n e ,  " 7 , e \ n " ,  & t e n P ) ;

T R A I N I N c - s T R U c T ( i , l )  =  t e n P ;

l
)

f c l o s e  ( t r n f p )  ;

n  =  0 . 0 ;

f o r  ( i = 0 ;  i < o u t P u t s ;  r + + )

t
* ( s w 2 + i )  =  0  0 ;

+ ( n i n + i )  =  I N F I N I T Y ;

t ( n a x + r )  =  0  O ;

* ( n  n i n )  =  O ;

* ( n _ m a x )  =  0 ;

]
i f ( ( d l i n f p = f o P e D ( e n v - v a l u e I A N L I N F I L E ] , " r " ) ) = = N U L L )  / t  o p e n  r n P u t  f i l e  * /

{
p t i n t f ( "  C a D n o t  o p e n  f i l e  7 . s \ n " ,

env  vaLue IANLINFILE]  )  ;

r e t u r n ;

]
i f ( ( e l o u t f p = f o p e n ( e n v  v a f u e I A N L O I J T F I L E ] , " w " ) ) = = N U L L )  / *  o p e n  o r L t p t r t  f i l e  * /

{
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p r i n t f ( "  C a n n o t  o p e n  f i l e  7 . s \ n , , ,
€nv-value [ANL0UTFILE] )  ;

return;

)
s t ruc t  nM =  O;

d o {

f g e t s  ( l i n e ,  L I N E S I Z E ,  a n l i n f p ) ;

l i n e l s t r t e n ( l i n e )  1 l  =  ' \ o , ;  
, / *  l o p  o f f  f i n a t  n e v t i n e  c h a r  * /

i f  ( f e o f ( i l 1 i n f p ) )

b r e a k ;

1 f ( ( t e s t f p = f o p e n ( 1 i n e , " r " ) ) = = N U L L )  / *  o p e n  i n p u t  f i l e  * /{
p r i n t f ( "  C i l n o t  o p e n  f i L e  7 , s \ n ' , ,

l i n e ) ;
reiutn;

)
f o r  ( i = 0 ;  i < 3 ;  i + + )  / *  r e ^ d  & . t i s c a r . t  ) r e a d e r  t i D a s  * /

f g e t s  ( l i n € ,  L I N E S I Z E ,  t e s r f p ) ;

/ *  g " r  p o ' n r .  o t  l c e d  i ( v )  ,  r r r v a  . /

f o r  ( i = l ;  r < = o r L t p u t s ;  1 + + )  / *  B c t  t a r g e t  o u t p u r s  + /
{
f g e t s  ( 1 i n e ,  L I N E S I Z E ,  t a s t f p ) ;

s s c a n f  ( 1 i n e ,  " 7 f \ n ' , , t a r g € t + i )  ;

]
J c l o s e  ( t e s t f p )  ;

n e t s o r k ( 0 ) ;  / *  r D n  t h e  n e t y o r k , / o  t e a c h i n S  + /

f o r  ( i = 1 ;  i < = o u t p u t s :  i + + )
Y Y ( i )  =  ( Y ( i )  b y l i l ) , / a y t r l ;  / *  u n  s c a t e  n e r w o r k  o u t p u r  * /

f p r i n t f  ( a n l o u t f p , ' \ n T e s t  I r t : \ n , , ,  s t r u c t  n w ) ;

i f  ( e r r o r  > =  1 . 0 e - 6 )
f p r i n t f  ( a n l o u t f p , , , \ n  E r r o r  =  7 . f \ n , ' ,  e r r o r ) ;  / *  p r i n i  e r r o r  i n  f  f o r m a r  * /

e l s e
f p r r n t f  ( i l L o r t f p , " \ n  l i r r o r  =  ) / , e \ n ' , ,  e r r o r ) ;  / *  p r i n t  o r r o r  r n  e  f o r n a t  * /

f p r i n t f  ( i l l o u r f p , "  T a r g e t  o u t p u t s : \ n ' , ) ;  / *  p r j D t  c x p e c t e d  o u t p u r s  ! /
f o r  ( i = L ;  i < = o u i p u t s ;  i + + )

f p r r t r t f  ( e l o u t f p , , ,  7 , f \ n ' ,  , T I R C E T ( i )  )  ;

f p r i n t f  ( d 1 o u t J p , "  N e t r o r k  c o m p u t e d  o u t p u t s : \ n ( ) ; / *  p r i n t  n € t a o r k  c o m p u i e d  o u t p u t s * /
f o r  ( i = l ;  i < = o u t p u t s ;  i + + )

f p r i n t f  ( m I o u t f p , "  7 . f \ n , , , Y Y ( i ) ) ;

f o r  ( i = 0 ;  i < o u t p u t s ;  i + + )
{
d e l t a  =  T A R C E T ( i + 1 )  -  Y Y ( r + 1 ) ;

* ( s u n 2 + i )  + :  d e L t a  *  d e l t a ;

i f  ( f a b s  ( d e l t a )  <  *  ( n i n + i  )  )

{
* ( m i n + i )  =  f a b s ( d e 1 t a )  ;
. ( n  m l n + r )  =  s t r u c t  n b ;
)

r f  ( l a b s ( d e L t a )  >  ' ( m a x + t ) )

{
* ( m a x + 1 )  =  f a b s ( d e 1 t a )  ;
* ( n _ m a x + i )  -  s t r u c t , n m ;

)
)

r h s  =  0 . 0 ;  / *  c o m p u t e  r n s  e f f o r  * /
f o r  ( i = 1 ;  i < = o u t p u t s ;  r + + )

. * 5  + =  ( y y ( i )  T A R G E T ( i )  )  * ( y y ( 1 ) - T A R G E T ( i )  )  ;
rns = sqrt(rns/outputs) ;
fpr intJ (elotr t fp,"  RMs error = 7,f \n, , ,  rms);  / r  pr int  rms error */
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nin distance = I t lFINITy;

J o r  ( i = 0 ;  i < s t r u c t r t r e s ;  i + + )
{
d i s t a c e  =  0 . 0 ;
f o r  ( j = 0 ;  J < o u t p u t s ;  j + + )

{
t e m P  =  T A R C E T ( J + 1 )  ,  . I R A I N I N G  

S T R U C T ( i , j ) ;
dist i lce += temp*temp.
)

d i s t o c e  =  s q r t ( d i s t a n c e )  ;
i f  ( d i s t a n c €  <  m i n  d r s t a n c e )

n i n  d i s t e c e  =  d i s t a n c e ;

)
f p r l n i f  ( e l o u t f p , ' ,  D i s r n c e  L o  n e a r e s t  t r a i n i n g  p o i n t  =  Z f \ n , , ,

m i n _ d i s t a h c e )  ;  / *  p r i n t  d i s t a n c €  * /

n + + ;

s t ruc t  nDn++;

)  s h i l e  (  t f e o f ( a n l i n f p ) ) ;

f  p r i n t f  ( i l l o u t f  p , , , \ n \ n F i n a t  r e s u l t s  :  \ n \ n , ,  )  ;

f o r  ( i = 0 ;  i < o u t p u t s ;  r + + )

{
r n s _ f i n a l  =  s q r t ( * ( s M 2 + i ) / n )  ;
f p r r n t f ( a n l o u t f p , " 0 u t p u t  7 , d :  M r n i m M  e r r o r  =  L f  G t  s t r u c t u r e  7 . d ) \ n . ,  i ,  * ( m r n + i ) ,  * ( n  n l r r + i ) ) ;
f P r i D t f ( a n l o u t f p , "  M a x i m m  e r r o r  =  , / , I  ( a t  s t r u c t u r e  7 , r l ) \ n , , ,  * ( m a x + i ) ,  * ( n  n a x + 1 ) ) ;
f p r i n t f ( a n l o u r f p , '  R M S  e r r o r  =  Z f \ n \ n , , ,  r m s  f i n a l ) ;)

f r € e  ( t r a i n i t r g  s r r u c t ) ;

f r € €  ( n _ m a x ) ;

f r e e  ( n _ m i n ) ;

f r e e  ( n a x ) ;

f r e e  ( n i n ) ;

f r e e  ( s u n 2 ) ;

f c l o s e  ( i l l i h f p ) ;

f c l o s e  ( i l 1 o u t f p ) ;

I

/ 4 4 * a 4 * t + + 4 ' t . * , ,  
+ * + * * * 1 * * * /

, z *  a s k o  
\ /

/ a * + a * + * t t * + * * * * *  . + * , ; * * * * * /

v o i d  a s k  ( v o i d )

t
1 f ( ( t e s t f p = f o p e n ( e n v  v a t u e t S I N C L E ] , , ' r , ' ) ) = = N r j L L )  / *  o p e n  , s r n g t e ,  f i l e  , /{

p r i n t f ( "  C a n n o t  o p e n  f i t e  ? s \ n , , ,
env,value ISINGLE] )  ;

)
f o r  ( i = 0 ;  i < 3 ;  1 + + )  / r  r e a d  &  d i s c a r d  r o a d e r  f i . . "  * /

f g e t s  ( 1 i D e ,  L I N E S I Z E ,  t e s t f p ) ;

/ *  g e i  p o i r L l s  o f  l e € d  i ( v )  c u r v e  ' /

f o r  ( i = 1  i < - o u t p u t s ;  i + + )  / *  g e r  t a r g e t  o [ r p u r s  * /{
f g e t s  ( 1 i D e ,  L I N E S I Z E ,  t e s r f p ) ;
s s c i l f  ( 1 i n e , ' , Z f \ n , ' , t a r g e t + i )  ;)

netyork (o) ;  / *  run  the  ne t lo rk  p /o  teach i t rg  * /
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f o r  ( 1 = 1 ;  r < = o u t p u t s ;  i + + )
Y Y ( i )  =  ( Y ( i )  b y I i ] ) / a y t i l ;

i f  ( e r r o r  > =  1 . 0 e - 6 )
p r l n t l  ( "  E r r o r  Z f \ n " ,  e r r o r ) ;

else
p r i n t f  ( "  E r r o r  =  z e \ n " ,  e r r o r ) ;

p r i n t f  ( "  T d g e t  o u t p u t s : \ D " )
f o r  ( i = 1 ;  i < = o u t p u t s  i + + )

p r i n t f  ( "  7 f \ n " , T A R G E T ( i r r ;

p r r n t f  ( "  N e t s o r k  c o m p u t e d  o u t p u t s : \ n " )
f o r  ( i = 1 ;  i < = o u t p u t s  i + + )

p r i n t f  ( "  i a f \ n " , Y Y ( i )  ) ;

r m s  =  0 . 0 ;
f ^ r  { i = l  i z = ^ ! , i n i l r s .  i + + )

r m s  + =  ( Y Y ( i . )  - T A R G E T  ( i )  )  *  ( Y Y ( i ) ' I  A R C E T ( 1 )  )  ;
rns = sqrt(rms/outputs) ;

v o i d  d e b e m ( v o i d )

{
l o n g  i ,  j ,  k ;

c h a r  s t r  [ 2 0 0 ] ;

c h a r  s t r  2  [ 4 ]  ;

l o n g  b e m _ p t s ;

F I L E  * i n f p ,  * * b e a n i f p p ;

/ *  u n  s c a l e  n e t u o r k  o u t p u t  * /

/ +  f r l n L  e r r o r  l i l  I  I o r f l a L  r /

/ *  p t  t n t  e t  r o r  i n  e  f o r m a L  r /

/*  pr int  expected outputs */

/a pr int  neruork conrputed outputs*/

/*  conpute rns error */

p r i n t f  ( "  R M S  e r r o r  -  7 f \ n " ,  r m s ) ,

1

/* pr int  rms error */

/ *  d e b e m o

/ .  r n n v  n v e r  I  h F  r  I  r . t  '  h - F F  h c a d , , r  l r n e s

/ *  l o o p  c o u n t e r s  * /

f o r  ( i = o ;  i < b e m s ;  i + + )

{
s t r c P y ( s t r , " b e m - " ) ;
c h r r n i f  t s i r ,  

i i . / n l i r i  
r  \  .

s t r c a t ( s t r , s t r 2 ) ;
i f  ( ( * ( b e m f p p + i ) = f o p e n ( s t r , ' , u , , ) ) = = N U L L )

{
p r r n t l  ( "  E r r o r  o p e n i n g  f t l e  7 . s \ n " ,

s t r ) ;
return;
)

]

/* - -------*/

f g e t s ( s t r ,  2 0 0 ,  i n f p ) ;
i h h , , r <  =  ' r ^ r  a c r i \ .
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s t r l s t r l e n ( s t r )  1 ]  =  ' \ o ' ;

strcpy (env_va1ue I INPUTS] ,  str)  ;

bem pts = inputs /  bei ls;
s p r i n t f  ( s t r ,  " % d \ D " ,  b e m _ p t s )  ;
f o r  ( i = 0 ;  i < b e m s ;  i + + )

f p u t s ( s t r ,  * ( b e m f P P + i ) )  ;

f g e t s ( s t r ,  2 0 0 ,  j n J p ) ;

l o r  ( i = 0 ;  i < b e m s ;  i + + )
f p u t s ( s t r ,  * ( b e m f p p + i ) )  ;

o u t p u t s  =  a t o i ( s t r ) ;
s t r I s t r l e n ( s t r ) - 1 ]  = ' \ 0 '  ;
strcpy (env_value [0trTPUIS] ,  str)  ;

f g e t s ( s t r ,  2 0 0 ,  i n f p ) ;
f o r  ( i = 0 ;  i < b e m s ;  i + + )

f p u t s ( s t r ,  * ( b e : m f p p + i ) )  ;

s t r I s t r l e n ( s t r )  1 ]  =  ' \ 0 ' ;

s t r c p y ( e n v  v a 1 t r € [ S T R U C T U R E S ] , s t r )  ;

/ *  renove f ina l  newl in€

/ *  copy  to  env  var  s t r rng

, /*  f ind nmber of points per bem */

/ *  c o p y  t o  " b e m . x x x "  f i l e s  * /

/ i  number of outpDts 4/

/ *  c a p y  t o  " o u t p u t s "  e n v  v a r i a b l e  * /

/ *  r e m o v e  f i n a l .  n e u l i n e + /

/ *  c o p y  t o  e n v  v a r  s t r i n g  , /

/ *  n u m b e r  o f  s t r u c t u r e s  * /

/ .  c o p y  t o  " b e a m . x x x "  f i l c s  + /

/ t  c o p y  t o  I ' s t r u c t u r e s "  e n v  v a r  + /

/ *  r e m o v e  J i n a L  n e s l i n e  * /

/ *  c o p y  t o  e n v  v a r  s t r l n g  * /

f o r  ( i = 0 ;  i < o u t p u t s ;  i + + )

t
f g e t s ( s t r ,  2 O 0 ,  i n f p ) ;
f o r  ( . ] = 0 ;  J < b e a m s ;  J + + )

J p u t s ( s L r ,  . ( b o m f p p ,  J )  )  i
)

)

/ 4 - - - - - - - -

/ *  c l o s e  a l 1  f i l e s

f c l o s e  ( i n f p )  ;

f o r  ( i = 0 ;  i < b € i l s ;  i + + )

f c l o s e ( * ( b e i l f p p + i ) ) ;

)

void display_seight (void)

{
i n t  i ,  j ;

i  = atoi  (cndstr [2]  )  ;
j  = atoi  (cmdstr [3]  )  ;

r f  a l c i i - h h f . n / < t r f l l  " . ' r \ \

p r i n t f ( "  v ( 7 . d , 7 . d )  =  7 , f \ n " ,
i ,  j ,  v ( i , j ) ) ;

e f s e  i f  ( ! s t r c n p ( r : m d s t r [ 1 ] ,  " w " , ,
p r i n t f ( "  v ( 7 . d , 7 , d )  =  z f \ n " ,

i ,  j ,  u ( i , j ) ) ;

/ *  i n d i c e s

/ *  c o n v e r t  l s t  r n d e x

/ *  convet  2nd rnd€x

/ !  !  inpu t - to -hrdden we igh t  x /

/ *  r  -  h ldden to  ou tpu t  re igh t  * /
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e lse  i / *  oops  need to  en ter  v  o r  s

t
p r i n t f ( "  S y n t a x :  d v  v l '  i  j \ n " ) ;  / *  p r i n t  e r r o r  m e s s a g e

p r i n t f ( "  v  f o r  i n p u t  t o  h i d d e n  E e i g h t \ n r r ) ;

p r i n t f ( "  u  f o r  h i d d e n  t o - o u [ p u L  u e i g h i \ n ' )  i

p r i n l . f ( "  i , j  d e  u c i g h t  r n d i L e F \ n " l :

)
]

/*  dump weights()  * /

/************************************************** **********/

vo ld  dMp_re igh ts  (vo id )

t
i n t  i ,  j ;

l oad_ve igh ts  O ; / +  l o a d  n e t u o r k  w e l g h t s

r f  ( ( d u m p f p = f o p e n ( e n v  v a L u e f l l U M P F I L E l , " t " ) ) = = N U L L )  / *  o p c n  o u t p u r  f  r l e

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  ) / . s \ n " ,

e n v - v a l  u p  f D U l 4 P F l L E l  ) ,

r e c u r n ;

)
f o r  ( i = 0 ;  i < = i n p u t s ;  i + + )

f o r  ( j = 0 ;  j < = h i d d e n ;  j + + )

f p r r n u l ( d m p f p , '  v ( 7 . d , 7 , d )  7 . f \ n ' ,
i ,  j ,  v ( i , j ) ) ;

f o r  ( i = 0 ;  i < = h i d d e n ;  i + + )

f o r  ( j = O ;  j < = o u t P u t s ;  J + + )
f p r i n t f  ( d m p f p , "  u ( 7 , d , i l d )  =  7 , I \ n " ,

i ,  j ,  
" J ( r , - i ) ) ;

f c l o s e ( d m p f p ) ;

l

v o i d  h e l p ( v o i d )

t
c h a r  s t r [ 1 6 ]  ;
c h a r  s t r B o  I L I N E S I Z E + t ]  i
s h o r t  J o u d ;
F I L E  * f p ;

i f  (  ! s t r c m p ( c m d s t r t 1 l ,  " " )  )
s t r c p y ( c m d s r r f l l . ' g " n e r a l ' ) ,

s t r c p y ( s t r , r r * * * " ) ;
s t r c a t  ( s t r ,  c n d s t r  [ 1 ]  )  ;
s t r c a t  ( s t r ,  r ' \ n "  )  ;

/ *  s t r  t o  h o l d  h e l p  p a r a m e t e r  * /

/ r  h a l d c  I , , , !  i r . .  h p r n  J , 1 , .  . /

/ *  h e l p  f r l e  s e c t l o n  f o u n d  f l a g  * /

/ *  h e l p  f l L e  p o i n t e r  * /

/ *  i f  n o  a r g M e n t s  g 1 v e n . .  * /

/ *  then se t  to  shou genera f  he lp  * /

/ *  f o r n  h a l p  f i l e  s e c t i o n  h e a d e r  * /

, / *  ( f o r n a t :  * * * c m d n m e )  * /

/ *  a d d  \ n  s l n c e  f g o t s  g i v e s  a  \ n  * /

i f  ( ( f p = f o p e n ( e n v - v a L u e I H E L P F I L E ] , " r " ) ) = = N U L L )  / +  o p e n  h e l p  I i l e

{
p r r n t f ( "  H e f p  f r l e  7 , s  n o t  J o u n d . \ n " ,  / *  i f  h e l p  f i l e  n o t  f o u D d

e n v _ v a l u e  L H E L P F I L E I  )  ,
r€turn;

)
f o u d  =  0 ;

d o {

f  S e t s  ( s t r 8 0 ,  L I N E S I Z E , f  p )  ;

i f  ( ( ! f o u n d )  & &  ( ! s t r c n p ( s t r , s t r 8 0 ) ) )

t

/ *  p r i n t  c r r o r  m a s s a g e

/ *  . . a r d  r e t u r n  r /

/ *  r n i t  f l a g  t o  r n o i  f o u n d )  * /

/ *  read th rough the  he lp  f i le  * /

/ *  r e a d  i n  o n e  l i n €  * /

/ *  i f  h e l p  s e c t i o n  f o u n d .  .  x /
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f o u n d  =  1 ;

cont inue;

)
l I  ( I O U n O )

{
i f  ( s t r 8 0 [ 0 1 = = , * , )

break;
e l s e

p r i n t f ( " 7 s " , s t r 8 0 ) ;

I
]  v h i l e  (  ! f e o f  ( f p )  ) ;

f c l o s e  ( f p )  ;
I

v o i d  i n i t ( v o i d )

t
c h a r  s t r I L I N E S I Z E ] ;

char  var  [16 ]  ;
c h a r  a r g I L I N E S I Z E ] ;

F I L E  * f P ;

{
d o {

f g e t s  ( s t r ,  L I N E S T Z E ,  f p )

c p  =  s t r ;

! h i 1 e  ( * c P = = '  ' )

c p + i ;

/ *  s e t  ' f o u n d )  f 1 a g . .  * /

/ *  md sk ip  to  read nex t  l ine  * /

/ *  i f  h e l p  s e c t i o n  p a s  f o u D d .  .  * /

/ *  . . i f  e n d  o f  s e c t i o n . .  * /

/ *  . . t h e n  s t o p  p r i n t i n g  * /

/ *  e l s e  i n  m l d d l e  o f  s a c t i o n . .  * /

/ *  . . s o  P r i n t  h e l p  i n f o  * /

/ *  s t o p  a t  e n d  o f  h e l p  { i ] e  * /

/ *  c l o s e  h e l p  f i l e  + /

/ *  L e e d n e t - 1 n i  i n p u t  l 1 n c  * /

/ *  env i roment  var rab le  r /

/ *  va lue  to  se t  env  var iabLe * /

/ *  p o i n r e r  f o r  l e e d n e t . i n r  * /

/ *  r e a d  i D  l i n o  f r o h  l c c d n c t . i n r  * /

/ *  p o i n t  p  t o  s t a r t  o f  i n p u t  s t r  * /

/*  point q to start  of  var name */

/ *  s k i p  p a s t  l e a d l n g  s p a c e s  4 /

i f ( ( f p = f o P . n , " a " " n n e t . r n r " , " r ' l ) ' = N U L L )  / *  i f  l e e d n e t . i n i  e x r s r s . .  * /

v h i l e  ( ( * c p ) & & ( * c p r = ,  ) ) & & ( * c p ' = ' - , ) )  
/ *  s c m  i n p u t  u n t i l  \ o  s p c  o r . .  * /

* c q + +  =  r o l o N e r ( * c p + + ) ;  / *  c o p y  c h a r a c r e r s  ! o  s t r i n g  * /
* c q  =  ' \ O '  

;  /  *  t e r m i n a l e  s t r i n g  v h e n  d o n e  * /

i f  ( v a r [ o ] = = ' ; ' )  / *  r f  t h r s  i s  a  c o m e n t  l i n e . .  * /

c o n t i n u e ;  / *  . . s k i p  t o  r e a d  i h  n e x t  l i n e  * /

u h i l e  ( ( * c p = - ,  , ;  I  I  1 * c p = = , = , ) )  / *  s k i p  o v a r  a n y  s p a c o s  o r  ,  ,  1 /

c P + + ;

cq  =  arg ;

/ *  c o p y  c h a r a c t e r s  t o  s t r l n g  * /

/ *  te rmrnate  s t r ing  when done * /

/ *  c h e c k  a g a i n s t  € n v  v a r  f i s t  + /

i f  ( ! s t r c m p ( v a r , e n v  v a r [ i ] ) )  / *  i f  t h l s  v a r  f o D n i i  i n  l i s t . .  * /

{
s t r c p y ( e n v  v a l u e l r l , a r g ) ;  / *  - . c o p y  ] t s  v a l u e  t o  e n v  v a l u e  * /

break;

]
i f  (  ! s t r c n p ( v a r ,  " s c a l e " )  )

{
s t r c p y ( c n d s t r [ 1 ] ,  a r g )  ;

v h i l e  ( t c P = = '  ' 1

c p + + ;

c q  =  & c m d s r r [ 2 ]  [ 0 ]  ;
u h i l e ( ( * c p ) & & ( * c p r = '  l ) A A ( * c p ' = ' \ n '  ) )

* c q + +  =  t o l o w e r ( * c p + + ) ;

w h i l e  ( * c P = = '  ' 1

c p + + '

/ *  -  - a n d  s t o p  s e a r c h



161

c q  =  & c n d s t r [ 3 ]  [ 0 ] ;
s h i l e (  ( * c p ) a & ( * c p '  = ) '  ) a & ( * c p l = r  \ n r  )  )

*cq++ = toloser(*cp++) ;

s c a f e  \ u /  ;

)
]  c h i l e  (  !  f e o f  ( f p )  )  ;

f c l o s e  ( f p )  ;
)

l oad-env  (  )  ;

]

v o i d  l o a d  e n v ( v o i d )

t
i npu ts  =  a to i  (env  va lue  I INPUTS]  )  ;

h idden =  a to i  (env-va lue  IHIDDEN]  )  ;

ou tpu ts  =  a to i  (env  va fue  IOUTPUTS]  )  ;

f u n c t i o n  =  a t o i ( e n v , v a l u e I F U N C T I 0 N ] ) ;

epochs  =  a to i  (env  va lue  [EP0CHS]  )  ;

d e l p r t  =  a t o i ( e n v  v a l u e | D E L P R T ] ) ;

mu =  a to f  (env  va lue  [MU]  )  ;

k a p p a  =  a t o f ( e n v  v a l u e I X A P P A ] ) ;

/ r  r o h o . r

/ *  c l o s e  l e e d n e t . i n i

/ *  load  env i . romenta l  var iab fcs

/*  load envo

p h 1 = a to f  (env  varue  IPHI I  )  ;

the ta  =  a to f  (env  -va lue  ITHETA]  )  ;

s e e d  =  a t o i ( e n v  v a l u e [ S E E D ] ) ;

nunpts  =  a to i  (env  va lue  INUMPTS]  )  ;

s t ruc tu res  =  a to i  (env  varue  ISTRUCTURESI  )  ;

sepnM = a to i  (env  varue  |SEPNUMI  )  ;

sk ip  =  a to i  (env  varue  ISKIPI  )  ;

s ta tus  =  a to i  (env  varue  tsTATUsl  )  ;

adapt ive  =  a to i  (env  va lue  IADAPTM]  )  ;

pause =  a to i  (env-va lue  IPAUSE]  )  ;

b e i l s  =  a t o i ( e n v  v a l u e [ B E A M S ] ) ;

e r ro r l im =  a to f  (env  varue  IERR0RLIHI  )  ;

de lana lyze  =  a to i  (env  va lue  IDELANALYZE]  )  ;

resumeepoch =  a to i  (env_va1ue [RESUUEEPoCH]  )  ;

seedmul t  =  a to f  (env  va lue  [SEEDMULT]  )  ;

]

/ *  load  env i romentaL var iab les  * /

/ *  conv  nmber  o f  inpu t  Dodes * /

/ *  conv  nmber  o f  h idden nodes * /

/ *  conv  nmber  o f  o [ tp [ t  nodes  * /

/ *  conv  da ta  conv  func  nMber  + /

/ *  conv  nrmbar  o f  apochs  to  teach* /

/ *  conv  nm o f  epochs  to  p r t  msg * /

/ *  conv  monentm ra te  * /

i / *  conv  mt  to  inc r  learn ing  ra te* /

/ *  c o n v  f a c t o r  t o  n u l t  l e a r n  r a t e * /

/ *  c o n v  J a c t o r  t o  c t r l  a v g  P e r i o d * /

/ *  conv  rmd nrm genera tor  seed * /

/ *  c o n v  n r m  p t s  i n  i ( v )  c u r v e  r /

/ *  conv  nm s t ruc tures  in  da ta  t /

/ *  conv  s t ruc tu re  num to  ex t rac t  * /

/ *  conv  nw oJ  po in ts  to  sk ip  * /

/ *  conv  t ra in ing  s ta tus  f lag  * /

/ *  conv  adapt rve  learn  ra te  f lag  * /

/ *  conv  t ra in ing  pause (epochs)  * ,u

/ *  conv  nm o f  bems 1n input  + /

/ *  conv  t ra in ing  er ro r  l im i t  * /

/ *  conv  nm o f  epochs  to  i laLyze * /

/ *  conv  resme epoch nMber  * /

/ *  conv  random saad nu l t lp l ie r  * /

/**************** **********/

v o i d  l o a d _ v e i g h t s  ( v o r d )

{
l o n g  i ,  j ;

char vstr ILINESIZE] ;
FILE *sgtfp;

i f  (  (wgtfp=fopen(env-value IVEICHTFILE],  "rb") )==NULL) / '  open weight f  i l€

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  7 , s \ n " ,

env value[. iEIGHTFILE] )  ;

1

f read(& inputs ,  s izeo f  ( fong)  ,  1 ,  vg t fp )  ;
I r e a d ( & h i d d e n ,  s i z e o f  f  l o n g ) .  I ,  u g t f p )  :
I r e a d ( & o u r p u t s ,  s i z e o f  ( l o n g ) ,  I ,  u S t f p ) :

s p r i n t f  ( i l s t r , " 7 d " ,  i n p u t s )  ;
s t r c p y  ( e n v  v a  l u e  I  I  N P U T S I , u s L r )  ;

/ '  r e : d  r r r r  a f  r r n i l t  n a d F .  , /

/ *  read nM o f  h idden nodes * /

/ *  read nM o f  ou tpu t  nodes  * /

/ '  c o n v  n w  i n p u t s  t o  s t r i n g . .  * /

/ *  . . d d  c o p y  t o  e n v , - v a l u e  * /
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s p r i n t f ( v s t r , " 7 d " ,  h l d d e n ) ;  / *  c o n v  n m  h i d d e n  t o  s t r u g .  .  + /

s t r c p y ( e n v  v a l u e [ H I D D E N ] , w s t r ) ;  / *  . . M d  c o p y  t o  e n v _ v a f u e  + /

s p r i n t f ( v s t r , " 7 d " ,  o u t p u t s ) ;  / *  c o n v  n w  o u t p L r t s  t o  s t r l n g . .  * /

s t r c p y ( e n v  v a l u e [ 0 U T P U T S ] , w s t r ) ;  / *  . . m d  c o p y  t o  e n v  v a l u e  * /

a l l o c o ;  / *  a l l o c a t e  n e m o r y  + /

f r e a d ( v ,  s l z e o f ( f l o a t ) ,  / *  r e a d  i n  v  w e i g h t s  * /

( i n p u t s + 1 ) * ( h i d d e n + 1 ) ,  w g t f p )  ;

f r e a d ( v ,  s i z e o f ( f l o a t ) ,  / *  r e a d  i n  w  w e i g b t s  + /
( h i d d e n + 1 )  + ( o u t p u t s + 1 ) ,  v g t f p )  ;

f c f o s e ( w g t f p ) ;  / *  c l o s e  w e i g h t  f r l e  * /

l

/**************** **********/
/ *  memoryO * /

/ i r * f r r * * * * * * * * * *  + + * * * + + a a t /

vo id  memory(vo ld )

{
doub le  men;

r f  ( ! s t r c n p ( c m d s t r I f ]  , " " ) )  / *  i f  n o  a r g u m e n t  w a s  g r v c n . .  * /

{
m e D  =  r n p u t s + 1 ;
n e m  + =  5 * ( i n p D t s + 1 ) * ( h r d d e n + 1 )  ;
m e m  + =  5 r ( h i d d e n + 1  ) ;
n e m  + =  5 * ( h i d d e n + t ) * ( o u i p u ! s + 1 )  ;
m e f t  + =  7 * ( o u t p u t s + 1 ) ;
m e n  * =  s i z e o f ( f l o a t ) ;
p r i n t f  ( "  7 0 . O l f  b y t e s  " , m e n ) ;
r f  ( n e m  <  1 . 0 4 8 5 7 6 e 6 )

p r r n t f  ( " ( 7 . 0 . 2 f  K b )  r s e d . \ n ' ,
n e n / 1 0 2 4 . O ) ;

e f s e
p r i n t f  ( " ( 7 . 0 . 2 f  M b )  u s e d . \ n " ,

nem/ 1 .  048576e6 ) ;
l

e lse /*  nem iDputs h: idden outputs */
{
n e n  =  a t o f  ( c n d s t r [ 1 ] ) + 1 ;

m e m  + =  5 r ( a t o f  ( c m d s t r I r ] ) + 1 ) . ( a t o f  ( c n d s t r [ 2 ] )  |  t )  ;
m e m  + =  5 * ( a t o f  ( c m d s t r t 2 l  ) + 1 )  ;
m e m  + =  5 *  ( a t o f  ( c m d s t r  t 2 l  )  + 1 )  *  ( a t o f  ( c n d s t r  t 3 l  )  + 1 )  ;
m e n  + =  7 * ( a t o f  ( c n d s t r [ 3 ]  ) + 1 )  ;
m e b  t =  s i z e o f ( f 1 o a t ) ;
p r i n t f  ( "  Z 0 . o l f  b y t € s  " . n e m ) ;
i f  ( m e m  <  1 . 0 4 8 5 7 6 e 6 )

p r l n t f  ( " ( 7 . 0 . 2 1 f  K b )  v o u l d  b e  n e e d e d . \ n " ,
n e n / 1 0 2 4 . O ) ;

e l s e
p r l n t f  ( " ( 7 0 . 2 1 f  M b )  u o u l d  b e  n e e d e d . \ n " ,

m e m /  I  . 0 4 8 5 7 6 e 6 )  ;
)

]

/**************** **********/
7 *  n e r g e o  * /

/ * r r * * * * * * * * * * * r * * * * * * * r r * * * r * * * * *  * * * * * a a * * * /

vo id  nerge(vo id )

{
chd str  [200] ;
s h o r t  c t r ,  i ;
F I L E  * i n J p ,  * o u t J p ;
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/* ---------------- */
/ *  ge t  nme o f  ou tpu t  f i l e  Md oPen i t  * /

/* -- ---------------------*/

p r i n t f ( "  E n t e r  n m e  o f  o u t p u t  f i l e :  " ) ;

s t r l s t r l e n ( s t r )  1 l  =  ' \ 0 ' ;

i f  ( ( o u t f p = f o p e n ( s t r , ' v " ) ) = = N U L L )

{
p r r n l - f ( "  E r r o r  o p e n r n g  l r l e  7 s . \ n " .  s t r ) ;

return;
)

/* */
/ *  + /

c t r  =  0 ;

s t r c p y ( s t r , " t e n p " ) ;

f o r  ( ; ; )

{
p r i n t f ( "  E n t e r  n a n a  o f  d a t a  f i l e :  " ) ;
f g e t s ( s t r ,  2 o o ,  s t d i n ) ;
s t r l s t r l e n ( s t r ) - 1 ]  = ' \ 0 '  ;

i f  ( ! s t r c m p ( s t r , " " ) )

break;

i f  ( ( i n f p = f o p e n ( s t r ,  " r " ) ) = = N U I - L )
{
n f l n r  f r "  F r r o r  ^ n p n , n p  f i  l e  7 , s . \ n '  ,  s u r ) ;

return;
)

c t r + + ;

i f  ( c t r  = =  1 )  / *  r f  t h i s  i s  t h e  l s t  d a t a  f i l e  * /

{
f g e t s ( s t r ,  2 0 0 ,  i n f p ) ;  /  *  -  - r e a d  n M  o f  i n p u t  n o d e s  * /

f p u t s ( s t r ,  o u t f p ) ;
i n p u t s  =  a t o i ( s t r ) ;
s t r I s t r ] € n ( s t r )  1 l  =  ' \ o ' ;

s t r c p y  ( e n v - v a l u e  I I N P U T S ] ,  s t r )  ;

f g e t s ( s t r ,  2 0 0 ,  i n f p ) ;  / *  r e a d  n u n  o f  o r r t l D t  n o d e s  + /

f p u t s ( s t r ,  o u t f p ) ;
o u t p u t s  =  a t o i ( s t r ) ;
s t r I s t r L e n ( s t r ) - 1 ]  = ' \ 0 '  ;
s t r c p y ( e n v  v a l u e  I 0 U T P U T S ] , s t r )  ;

J g e t s ( s t r ,  2 0 0 ,  i n f p ) ;  / +  . . r e a d  n r u  o f  s t r u c t s  l n  f l f e  * /

s t r u c t u r e s  =  a t o i ( s t r )  ;
spr int f  (str ,  "  7,d\n" ,  structures )  ;
f p u t s ( s t r ,  o u t f p ) ;
s t r t s t r l e n ( s t r ) - 1 1  = ' \ 0 '  ;
strcpy (env value ISTRUCTURES] ,  str)  ;
]

e f s e  , / *  i f  t h i s  i s  n o t  t h e  L s t  f i l e . .  * /

t
J g e t s ( s t r ,  2 0 0 ,  i n f p ) ;  / *  . . t h e n  s k i p  3  h e a d e r  L i n e s  * /

f g e t s ( s t r ,  2 0 0 ,  l n f p ) ;
J g e t s ( s t r ,  2 0 0 ,  i n f p ) ;

)
f o r  ( i = 0 ;  i < ( i n p u t s + o u t p u t s ) * s t r u c t u r e s ;

1 + +  )
{
f g e t s ( s t r ,  2 0 0 ,  i n f p )  |  /  *  a p p e n d  r n p u t  f i f e . .  * /

f p u t s ( s t r ,  o u t f p ) ;  / *  . . t o  e n d  o f  o u t p u t  f i l e  * /

)
f c l o s e ( i n f p . ) ;

]
p r i n t f ( "  ' l d  I i l e s  m e r g e d . \ n " ,  c L r ) ;

/ .  . 1 ^ < F  P ^ . 1  I n n , , !  ' ,  I p  4 /
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f c l o s e ( o u t J p ) ;  / *  c l o s e  o u t p u t  f i f e  * /

l

/********************************* ***************************/
/*  net_sigmoido - s igmoid funct ion */

/*** ** **** ** * * * ** * *** *** * **** * **** **** ***** * * ** * * ** ** * * *** * * *** * * * ** * * * ** * * ** */

f f o a t  n e t - s i g n o i d ( f 1 o a t  x )

{
r e t u r n  1 . 0 / ( 1 . o + e x p ( - x )  )  ;
)

/  *  * *  *  *  * *  * *  *  *  * *  *  * *  *  *  * *  *  *  * *  *  *  * * *  *  *  * *  *  *  * +  *  *  + * *  *  *  *  *  * *  *  *  *  *  * *  *  *  *  *  *  * *  *  *  * *  *  *  *  *  *  * *  *  *  * *  * /

/ *  ne t_update  se igh tso  * /

/ * + * * * * * * * * * * * * * * * * * * * *  * * * * * * * * *  * * * *  * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * *  /

v o i d  n e t  u p d a t e  v e i g h t s ( v o i d )

{
/* --*/
/ *  a d j u s t  v e i g h t s  * /

f o r  ( j = 0 ;  j < = h r d d e n ;  j + + )  / *  a d i u s t  w  w e i g h t s  * /

f o r  ( k = 1 ;  k < = o u t p u t s ;  k + + )

{
i f  (adapt ive)  / *  us ing  adaPt ive  learn ing  ra tes  * /

{
i f  ( D E L  v ( j , k ) * F  v ( j , k )  >  0 . 0 )

E  l . J ( j , k )  + =  k a p p a ;
e 1 s  e

E  v ( j , k )  * =  P h i ;

F  ! l ( j , k )  =  ( 1 . 0  t h e t a ) * D E L  i . I ( i , k )  '

t h e t a * F  W ( J , k ) ;
c _ H ( j , k )  =  ( 1 . 0  m u ) * E  i J ( . j , k ) * D E L  l , l ( j , k )  t

n u * c  l l ( j , x / ;
! r ( j , k )  + =  c  1 , r ( i , k ) ;

l
e f s e  / +  u s i n g  c o n s t i l t  f e a r n i n g  r a t o  * /

i , , I ( j , k )  =  k a p p a * D E l  v ( i , k ) ;

)
f o r  ( i = O ;  r < = i n p u t s -  i + + )  / *  a d l u s t  v  v e i S h t s  * /

f o r  ( j = 1 ;  j < = h i d d e n ;  i + + )
t
i f  (adapt ive)  / *  us lng  adaPt ive  Learn ing  ra tes  * l

{
i f  ( D E L  v ( i , j ) * F - V ( i , j )  >  0 . 0 )

E  V ( i , j )  + =  k a p P a ;
e l s e

E - v ( i , j )  * =  P h i ;

F - V ( i , j )  =  ( 1 . 0  t h e t a ) * D E L  V ( 1 , j )  +

t h e t a * F , V ( i , j ) ;
c  v ( i , j )  =  ( 1 . 0  m u ) * E - V ( r , j ) * D E L  V ( i , j )  +

m u * c  v ( i , . i ) ;

v ( i , j )  + =  c  v ( i , j ) ;

]
else /*  using constant learning rate */

v ( i ,  j )  - =  k a p p a * D E L - V ( i ,  j )  ;
]

)

/ * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * + * * * * * * *  * * * * * * * * * * /

/ *  n e t  z e r o  d e l s o  * /

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + + + * * 1 1 + r r * 4 + * * * * /

v o i d  n e t _ z e r o  d e l s ( v o i d )



165

t
F ^ r  r i = 6  r . = i h h , , r <  i + + l

f o r  ( j = 0 ;  j < = h l d d e n ;  t + + )
D E L - V ( i , j )  =  0 . 0 ;

f o r  ( j = 0 ;  j < = h i d d e n ;  . 1 + + 1
J o r  ( k = 0 ;  k < = o u t p r t s ;  k + + )

D E L  } J ( j , k )  =  0 . 0 ;

,

f o r  ( j = 1 ;  j < = h i d d e n ;  t + + )
{
Z  I N ( j )  =  v ( 0 , J ) ;
f o r  ( i = 1 ;  i < = i n p u t s ;  i + + )

z , I N ( j )  + =  x ( 1 )  *  v ( i , j ) ;
Z ( j )  -  n e t  s i g n o i d ( Z  I N r l ) ) ;

)
f o r  ( k = 1 ;  k < = o u t p r t s ;  k + + )

t
Y  I N ( k )  =  l J ( o , k ) ;
J o r  ( j = 1 ;  j < = h i d d o n ;  J r + )

y  r N ( k )  + =  z ( j )  * v ( j , k ) ;

Y ( k )  -  n e t  s i B n o r 4 ( Y  l N ( k ) ) :

)
f o r  ( i = 1 ;  i < = o u t p u t s ;  r + + )

T ( i )  =  T A R C E T ( 1 )  * a y t i l  + t r y  t i l  ;

f o r  ( k = 1 ;  k < =  o r t p u t s -  k + + )
e r r o r  + =  ( Y ( k )  1 ( k ) ) r ( Y ( k )  T ( k ) ) ;

i f  (  |  learn)
return;

f o r  ( j = o ;  j < = h i d d e n ;  j + + )

Q ( j )  =  o . o ;

t *  z l j l  -  s r m  o f  r n p u i s * v e i g h t s  * /

/ *  i n i t  s m  t o  b i a s  c e r g h t  v [ o j ]  * /

/ *  c o m p u t e  s r m  f o r  n e u r o n  z [ j ]  * /

, r *  s a v c  s i g m o i d  l i m r r e d  z l j l  * /

/ *  y l k l  =  s u m  o f  r n p u t s * w e l g h t s  * /

/ .  r r r i r  o i l t p r l t  s r m  r o  b r a s  u e i g h t . /

/ *  c o m p u t e  s m  f o r  n e u r o D  y l k l  * /

/ *  s a v e  s r g m o i d  l  r m i t e d  y  l k l  r /

/ *  s e l .  s c a l e d  t a r f . r i  v a l u c s  * /

/ *  i f  n o t  l e a r n i n g .  .  * /

/ *  . . t h e n  r e t u r n  * /

/+  zero  t tde  q [ ]  a r ray  + /

/ .
/*  back propagate error */

*/

f o r  ( k = 1 ;  k < = o u t p D t s  k + + )

{
P ( k )  =  ( Y ( k )  r ( k ) )  +  Y ( k )  *  ( 1 . 0 - Y ( k ) ) ;

D E L  r , t ( O , k )  + =  P ( k ) ;
f o r  ( l = 1 ;  j < = h i < t d e n ;  1 + + )

{
D E L _ ! , / ( J . k )  + .  P ( ^ )  +  L ( J ) l

Q ( j )  + =  P ( k )  *  I . J ( J , k ) ;

]
)

f o r  ( j = 1 ;  j < = h i d d e n ;  j + + )

t
a ( j )  * =  z ( j )  *  ( 1 . o - z ( j ) ) ;
D E L _ V ( 0 , j )  + =  Q ( j ) ;
+ ^ i  r l = 1 .  i < = i h h , , r s .  l + + l

D E L _ V ( i , j )  + =  Q ( j )  *  X ( i ) ,
l

)
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/**************** ***************************/
/ *  p l o t - d a t a o  * /

/************************************************** **********/

v w r u  P r u L

{
l o n g  p t s ;

f loa t  energy ,  energyo;

f loa t  de l  energy ;

f  ong max bem;

f l ^ a r  h r Y  a n c r r v '

+ 1 ^ > r  i n i o n s i r r r .

c h a r  s t l I L I N E S I Z E I ;

c h a r  s t r 2 [ 5 ] ;

l o n g  i ,  j ,  k ;

F I L E  * f m t f p ,  * s t r u c t f p ;

i f ( ( f n t f p = f o p e n ( e n v  v a l u e [ F 0 R " r , I A T T E D ]  , " r " ) ) = = N I I L L )  / ,  o f e n  f o r n a t t e d  f i l e  * /

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  Z s \ n " ,

env-va I  ue IF0R]4ATTEDI )  ;
return;

)
p r i n t f ( "  S t a r t i n g  e n e r g y  ( o V ) :  " ) ;
f g e t s ( s t r ,  L I N E S I Z E ,  s t d i n )  ;
s s c a n f  ( s t r ,  i 7 f  i l , & e n e r g y 0 )  ;

pr int f  ("  Energy step (eV) :  "  )  ;
f g e t s ( s t r ,  L I N E S I Z E ,  s t d i n )  ;
s s c a n f  ( s t r ,  " 7 f " , & d e l  e n e r g y )  ;

f g e t s ( s t r ,  L I N E S I Z E ,  f n t f P )  ;

s t r [ s r r l e n ( s t r ) - 1 ]  = ' \ 0 '  ;
strcpy(env value I INPUTSI ,  str)  ;

f g e t s ( s t r ,  L I N E S I Z E ,  f m t f p )  ;
s s c a n f  ( s t r ,  " 7 d " ,  & o u t p u t s )  ;
s t r [ s t r l e n ( s t r ) - 1 ]  =  ' \ 0 '  '

s t r c p y ( e n v  v a l u e f o U T P m S l , s t  r  ) ,

f g e t s ( s t r ,  L I N E S I Z E ,  f m t f p )  ;
s s c a n f  ( s t r  ,  " 7 d " .  & s I r i l . L r r r c s )
s t r l s t r l e n ( s t r )  1 l  =  ' \ 0 ' ;

strcpy (env-value fSTRUCTURESI ,  str)  ;

p t s  =  l n p u t s  /  b e m s ;

n a x  i n t e n s i t y  =  0 . 0 ;

f o r  ( i = 0 ;  i < s t r u c t u r e s ;  i + + )

t
s t r c p y ( s t r ,  " s t r u c t .  " )  ;
s p r i n t f  ( s t r 2 ,  " 7 0 3 d " ,  i )  ;

r f  ( ( s t r u c t f p - f o p e n ( s t r , " u " ) )  N U L L )

t
p r r n [ 1  ( "  E r  r o r  o p e n r n g  f i  l e  7 , s \ n " ,

s t r ) ;
return;
]

. ^ - ; ^ t t t - t - , , - t  f ^  " t n . i \ - ,  i ) ;

f o r  ( j = 0 ;  j < b e m s ;  j + + )

{
energy = energy0;
f o r  ( k = 0 ;  k < p t s ;  k + + )

t

/ *  r e a d  1 n  l n p u t s  * /

' /
/ *  remove f ina l  nevs t r  * /

, /

/ *  read in  ou tpu ts  * /

/ *  copy  to  "ou tpu ts"  cnv  var  * /

/ *  r e m o v e  f i n a f  n e E s t r  * /

/ *  copy  to  cnv  var  s t r ing  * /

/ *  read in  nwber  o f  s t ruc tu res  * /

/ .  ,  n n v  I  a  " .  1  r  r . 1 ' r '  F s "  F r v  v A r  .  /

/ *  renove f ina f  nevs t r  x /

/ *  c o p y  t o  e n v  v a r  s t r i n g  * /

/ *  f r n d  n u n  o f  p o i n t s  p e r  b e a n  * /

f p r i n t f ( s t r u c t f p , " 7 8 . 2 f " , e n e r g y ) ;  / *  p r i n t  e n e r g y  t o  f i l e
f g e t s ( s t r ,  L I N E S I Z E ,  f m t f p ) ;  / '  r e a d  . i n  n e x t  r n L e n s i t y

/* pr int  structure nMber */
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f p r i n t f ( s t r u c t f p , "  7 . s " , s t r ) ;  / '  l r l n t  t n t e n s i t y  t o  { i ] e  * /

s s c i l f  ( s t r ,  " 7 f  " , & i n t e n s i  ! y )  :
i f  ( intensi ty > max-intensity)

t
nax_intensity = intensity;
max_struct = i ;
max_beam = j ;

nax-energy = energyo
+ k*del energy;

]
energy  += de f -energy ;  / *  f ind  nex t  energy  va lue  * /

)
]

f o r  ( k = 0 ;  k < o u t p u t s ;  k + + )
f g e t s ( s t r ,  L I N E S I Z E ,  f m t f p ) ;  / *  r e a d  i n  o u t p u t s  &  d i s c a r d  r /

f c l o s e ( s t r u c t f p ) ;

)
h , i h + + / r  M 5 v  i h r 6 n c r r v  = ' / +  |

' ' j n  
s t r u c t u r e  7 . 1 d ,  b e m  Z l d ,  "

" a t  7 , f  e v \ n " ,

m a x  i n t e n s i t y ,  n a x  s t r u c t ,

max be i l ,  max energy) ;

]

/ *  p r u n e o

/* */
/ *  o p e n  a l l  f i L e s  * /

v o i d  p r u n e ( v o i d )

{

l o n g  i ,  j ,  k ;
fong nesinputs;
c h a r  s t r [ 2 0 0 ] ;
F I L E  * i n f p ,  * o u t f p ;

i f  (  ( i n f p = f o p e n ( e n v  v a l u e l F 0 R M n T T i i D l , " r " ) ) = = N t l L L )

{
p r r n t f  ( "  E r r o r  o p e n i n g  f r f e  7 . s \ n " ,

env-value IFoR.],{ATTEDI ) ;
return;

)
i f  ( ( o u t f p = f o p e n ( e n v  v a r u e I P R U N E D ] , " w " ) ) = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f i  l e  Z s \ n " ,

e n v  v a t u e I P R U N E D ] ) ;
r e t u r n ;

l

/ +  - - - - - - - - - - -  -  * /

/*  read the number of input and output nodes from the input f i le */

/*  * /

f g e t s ( s t r , 2 0 0 , i n f p ) ;
i n p u t s  =  a t o i ( s t r ) ;

f g e t s ( s t r , 2 O 0 , i n f p ) ;
o u t p u t s  =  a t o i ( s t r ) ;

r e c i n d ( i n f p ) ;

/*------------- */
/ *  f ind  new nmber  o f  inpu ts  * /
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f o r  ( j = 0 ;  j < i n p u t s ;  i + + )
{
i f  ( ( j  ) l  ( s k r P + 1 ) )  = =  0 )

newtnputs++;

)

/* - --------------- -- ---*/
/*  do stuff  * /

/ * -  - -  -  + /

f g e t s ( s t r , 2 0 0 , i D f p ) ;
s p r i n t f  ( s t r , ' 7 l d \ n " , n e c l n p t r t s ) ,

f p u t s ( s t r , o u t f p ) ;

f g e t s ( s t r , 2 0 0 , i n f p ) ;
f p u t s ( s t r , o u t f p ) ;

f g e t s ( s t r , 2 0 0 , i n f p ) ;
f p u t s  ( s t r ,  o u t f p )  ;

+ ^ r  r i = 6  i < s i r r , . r , ! r o c  a  L . )

{
f o r  ( j = 0 ;  j < i n p u t s ;  1 + + 1

{
f g e t s  (  s t r  , 2 o 0  ,  l n f p )  ;
i f  ( ( i  7  ( s k i p + 1 ) )  = -  0 )

f p u t s  ( s i r  ,  o u t f p )  ;
I

f o r  ( j = 0 ;  j < o u t p u t s ;  . j + + )
{
f g e t s ( s t r , 2 0 0 , i n f p ) ;
f p u t s  (  s t r ,  o u ! f p )  ;
I

I

/*----------------
n€Finputs = 0;

/ *  u p d a t e  n e p  n u n b e r  o l  I n p u l  s  &  o u l p u t : .

----- ---------*/
* /

/ *  c l o s e  a l l  f i l e s  * /

/*--------'-'- * /
f c l o s e  ( i n f p ) ;

r c l o s e  ( o u r r p r ;

l

/ +  -  r /

rnputs = neulnPDts;
s p r l n t f  ( e n v  v a l u e  t I N P U I S I  ,  " 7 , t d "  ,  i n p ) r t s )  ;

s p r i n t f  ( e n v _ v a l u e  [ 0 n P U T S ] ,  " 7 , 1 d " ,  o t r t p u t s  )  ;
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/ *  rand2( )  re tu rn  randon in t  in  r i lge  1-n  * /

/************'*** ********************************************/

i t r t  rand2(int  n)

{
n  =  ( f l o a t  )  n * r a n d l o  +  1 . 0 ;  / +  s e f e c t  r i l d o m  r ,  1  t o  N M A X  * /

r e t u r n  ( n ) ;

)

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * r * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * /

/ *  rand3( )  -  re tu rn  randon f loa t  in  range I  n  * /

/ * * * * * * * * * * * * * *  * r * * * * * * * * * * * * * * *  * * + * * * * * * * * * * * * * + * * * * * * * * * * * * *  r r * * * * * * * * * * * * * * /

f l o a t  r i l d 3 ( i n t  n )

t
r e t u r n  ( n * ( ( ( f l o a !  )  r a n d O ) / ( ( I r o a t  )  R A N D  f i A X ) ) ) ;

)

/ * * * * * * * * * * + * " * *  * * * * * * * * * , /

/ *  rand4o re tu rn  randon f loa t  in  ranga -1  +1  + /

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * + * * * * * * * * * * * * *  * * * * * * * * * * * * *  * * +  *  * * * * * * * * * * *  * * * /

f l o a t  r i l d 4 ( v o l d )

{
r e t u r n  ( 2 . 0 ' ( ( ( f l o a t  )  r a n d O ) / ( ( t l o a t  )  R A N D  M A x ) )  l . o ) ;
)

/ * * * . r * * * * . r * * * ' .  * * * * , * * * * * /

/ *  r a n d o m i z o  + /

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * r r /

vo id  r i ldomiz(vo id )

{
e n c o d e d  t i m e  =  t i m e ( N U L L ) ;  / *  g e t  e n c o d e d  s y s t e n  t i n c  4 /

s y s t i m e  =  I o c a l t i n e ( & e n c o d e d  t r n e ) ;  / *  I o r n a r  i t  a s  l o r i a l  t i n e  4 /

s e e d  =  ( r n t ) ( ( 1 0 0 0 0 . 0 / 6 0 . O ) * s y s t i m e  > t n  s e c  / *  c r e a i e  a  r a n d o m  s e e ( l  f r o m  t r m a * /

+  ( 1 0 0 . 0 / 6 0 . 0 ) * s y s t i n a - > t m  n i n )

*  ( R A N D  t { A X l 1 0 0 0 0 . O ) ;

s p r i n t f ( e n v  v a l u e t S E E D l  , " 7 d " , s e e d )  ;  / *  s e t  e n v  v a r i a b l e  ' s e e d '  * /

)

/ *  r e b e m o  * /

/ * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * r * * * * * * * * * * * * : r * * * *  * * * * + * * * * + /

v o i d  r e b e a m ( v o i d )

t
l o n g  i ,  j ,  k ;  / *  l o o p  c o u n t e r s  ' /

char str  [200] ;
c h a r  s t r 2 [ 4 ] ;
l o n g  b e m _ p t s ;
F I I  F  * ^ n i f h  r r h a a f , f n n .

/ *  o p e n  a 1 l  f i l e s

' .-----__--. ,/
a /

b e u f p p  =  ( F I L E  * * ) m a u o c ( b e m s * s i z e o f  ( F I L E  * ) )  ;
i f  (bemfpp == NULL)

t
p r r n t f ( "  E r r o r  a l l o c a L r n g  b e m  f i - L e  p o r n t e r " \ n ' ) ;
return;

]
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i f  ( ( o u t f P  =  f o p e n ( e n v  v a l u e I B E A M 0 U I F I L E ] , " w " ) ) = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  I  i I e  7 , s . \ n " ,

env vaLue IBEAM0UTFILE] )  ;
return;

]
f o r  ( i = 0 ;  i < b e m s ;  i + + )

t
h y i h + f / , '  F n , o r  n l T a  ^ {  h o . m  l r l e  Z d :  

, ,  
i r 1 ) ;

f g e t s  ( s t r ,  2 0 o ,  s t d i n )  ;
i f  ( ( s t r t o l = = ' \ 0 ' )  l l  ( s t r t o l = = ' \ n ' )  l l

( s t r t O l = = ' \ r ' )  )
break;

s t r  [ s t r l e n ( s t r )  1 ]  =  '  \ 0  '  ;
i f  (  ( * ( b e m f p p + i ) = f  o p e n ( s t r ,  " r " )  ) = = N U L L )

t
f r l e  Z s \ n " ,

s t r ) ;
retutn;

)
I

spr in t f  (env-va1ue [BEAMS]  ,  "7 ,Ld"  ,beams)

s p r i n t f ( e n v  v a l u e [ ] N P u T s l , " 7 , 1 d " , j n p u t s ) ;  / *  c o p y  i n p u t s  t o  c n v  v a r  s t r i n g  + /

/,
/ *  copy  over  the  f i rs t  th ree  header  f ines

/ *  copy  ro  env  var  s t r ing

/*  nunber of outpnts

/ *  copy  to  env  var  s t r ing

f g e t s ( s t r ,  2 0 0 ,  * b e i l f p p )  ;
a i ^ i  I  c i r  I

inputs = bem_pts * bems;

s p r i n t f  ( s t r ,  " z d \ n " ,  i n p u t s )  ;
f p u t s ( s t r ,  o u t f p ) ;

f g e t s ( s t r ,  2 0 0 ,  * b e m l p p ) ;

f p u t s ( s t r ,  o u t f p ) ;
o u t p u t s  =  a t o i ( s t r ) ;
s t r I s t r t e n ( s t r ) - 1 ]  = ' \ 0 '  ;
strcpy (env-value [oUTPUTS] ,  str)  ;

f g e t s ( s t r ,  2 0 0 ,  * b e m f p p )  ;
f p u t s ( s t r ,  o u t f p ) ;
s t r u c t u r e s  =  a t o i ( s t r ) ;
s t r l s t r l e n ( s t r ) - l l  = ' \ 0 '  ;
strcpy(env value ISTRUCTURES],str)

f o r  ( i = 1 ;  i < b e m s ;  i + + )

{
f g e t s ( s t r ,  2 0 0 ,  * ( b e m f p p + i ) )  ;
f g e t s ( s t r ,  2 0 0 ,  * ( b e m f p p + i ) )  ;
f g e t s ( s t r ,  2 0 0 ,  * ( b e m f p p + i ) )  ;
1

/* mnber of inputs from 1st bem */

/*  f ind nmber of points pcr bem */

/*  f ind total  number of inputs +/

/*  convert  inputs to str ing */

/ *  c o p y  i n p u t s  ! o  o u t p u t  f i l a  * /

/ *  c o p y  t o  o u t p u t  I i L e  * /

/*  copy to "oi l tPtts" env var labfe */

/ *  r e n o v e  { i n a L  n e w l i r e  * /

/*  numbcr of structures */

/*  copy to output Ji fe */

/*  copy ro "stnlctures" cnv var */

/+  remove f ina f  nev l ine

/ *  capy  to  env  var  s t r ing

/ *  f o r  a l f  b e a m s  a f t e r  t h e  1 s t . .  * , /

/ *  - - r e a d  p a s t  t h c  3  h e a d e r  L i n e s  * /

/* -------*/
/ *  For  each s t r t rc tu r€ ,  read in  each beam and copy  to  the  bem outpu t  f r le -  * /

/*-- - ----------*/

f o r  ( k = 0 ;  k < s t r u c t u r e s ;  k + + )

{
J o r  ( i = 0 ;  i < b e i l s ;  i + + )

f o r  ( j = O ;  j < b e m - P t s ;  j + + )

{
f g e t s ( s t r ,  2 O O ,  * ( b e m f P P + i ) )  ;
f p u t s ( s t r ,  o u t f p ) ;

]
f o r  ( i = 0 ;  i < o u t p u t s ;  i + + )

{
f g e t s ( s t r ,  2 0 0 ,  * b e m f p p )  ;
f p u t s  ( s t r ,  o u t f P )  ;
)

l
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/ *  c lose  a1 l  f i l es

/* ----------- */

f c l o s e  ( o u t f p ) ;

f o r  ( i = 0 ;  i < b e m s ;  i + + )
f c l o s e ( * ( b e m f p p + r ) ) ;

l

/ *  s a v e  v e i g h t s o

/************************************************** **********/

vo id  save,ue igh ts  (vo id )

{
l o n g  i ,  j ;

FILE *rgtfp;

l f  (  (sg t fp= fopen(env  va lue  IWEIGHTFILE] ,  "vb" )  )==NULL)  / *  open we igh t  f  i l e

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  7 s \ n " ,

env value IHEIGHTFILEI )  ;
return;

]
f u r i t e ( & r n p u t s ,  s i z e o f ( l . n g ) ,  l .  u g t  f p ) i

fwr i te  (&h idden,  s izeo f  (1ong)  ,  I  ,  wgt fp )  ;

f u r i t e ( & o u t p u t s .  s r z " o f ( l o n g ) ,  l ,  u g t f p ) :

f s r i t e ( v ,  s i z e o f  ( f f o a t ) ,

( i n p u t s + 1 ) * ( h i d d e n + 1 ) ,  t g t f P )  ;

f c r i t e ( s ,  s i z e o f  ( f 1 o a t ) ,

( h i d d e n + 1 ) *  ( o u t p u t s + 1 ) ,  w g t f p )  ;

f c l o s e  ( e g t f p )  ;

]

/ *  w r i t e  m u n  o f  i n p u t  n o d a s  * /

/ *  wr i te  num o f  h idden nodes * /

/ +  w r i t e  n u m  o f  o u t p u t  n o d c s  * /

/ *  w r i t e  v  w e i g h t s  * /

/ *  w r i t e  w  v e i g h t s  * /

/ *  c L o s e  l e i g h t  f i l e  * /

/ *  s c a l e  (  ) t /

/ *  * * * * * * * * * * * * * * * * * * * * r * + * * * * * * * * * * * * * * * * * * * * 1 * + * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * /

v o i d  s c a l e ( i n t  v e r b o s e )

{
f l o a t  a y t ,  b y t ;
f loat tmin, tnax;
f l  ^ . r  < i l i n  s m : Y

J l o a t  x ;

u t  n n ,  1 ;

i f  (  ! s t r c m p ( c m d s t r t 1 l , " " )  )

{
p r i n t f ( "  S y n t a x :  s c a l e

, / *  i f  no  argwents  vere  g iven

" D i s p l a y  s c a l i n g s \ n " )  ;

print f  (  "

pr i t r t f  (  "

scafe  n  tmin  tmax [sn in  snax ]  tn l  "

" C a l c u l a t e  s c a l i n g s \ n " . )

sca le  n  va lue

" C o n v e r t \ n \ n " ) ;
pr int f  (  "Current scaLings :  \n\n" )  ;
f o r  ( i = 1 ;  i < S C A L I N G S ;  i + + )

p r i n t f  ( " A y t z d l  =  7 , f \ t B y t z d l  =  7 , f \ n " ,
i ,  a y t i l ,  i ,  b y t i l ) ;

]
n n  =  a t o i ( c m d s t r [ 1 ]  ) ;

r f  ( ( n n < 1 )  l l  ( m > = S C A L I N G S ) )
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t
pri t r t f ("Error:  Scal ing index must be in

"  t h e  r e g e  1 - % d \ n " ,  S C A L I N C S - 1 ) ;
return;

I

i f  l l c i Y . n h a . h i s r r f l l  " " \ )

t
x  =  a t o f ( c r t r d s t r [ 2 ]  ) ;
p r r n t f ( "  t r u e  - >  s c a l e d  -  ? f \ n " .

ay [h]  rx + by [nn] )  ;
p r i n t f ( "  s c a l e d  >  t r u e  =  z f \ n " ,

( x  -  b y [ n n ] )  /  a y [ n n ] ) ;
return;

)
t m i n  =  a t o f  ( c m d s t r [ 2 ]  )  ;

t m a x  =  a t o f  ( c m d s t r [ 3 ]  )  ;

i f  (  ! s t r c n p ( c m d s t r t s l ,  " " ) )

{
s m i n  =  0 . 1 ;
s m a x  =  O . 9 ;
s t o r e f l a g  . .  t o l o s e r ( c m d s t r [ 4 ]  [ 0 . ]  )  ;
]

e l s e

t
smin  =  a to f  (cmdst r  [ : ] l  )  ;

snax  =  a to f  (cnds t r  [4 ]  )  ;

s to re f lag  -  to lower (cnds t r [6 ]  [0 ]  )  ;

l

a y t  =  ( s n a x  s m r n ) / ( t n a x  t m i n ) ;

b y t  =  s n i n  a y t * t n i n ;

v o i d  s e p a r a t e ( v o i d )

{
t o n g  i ,  j ,  k ;
c h a r  s t r [ 2 O 0 ] ;
F I L E  r i n f p ,  l s e p 1 ,  * s e p 2 ;

/ *  i f  o n l y  o n e  a r g r h e n t  g i v e n - -  * /

/ *  ca fc .  sca led /unsca led  va l t res  * /

/ *  conver t  a rgwent  to  f loa t  * /

/ *  s c a f e  i f  x  l s  t r u e  v a L u e  * /

/ *  u n s c a f e  i f  x  i s  s c a l e d  v a l u e  r /

/ *  c o n v e r t  g i v e n  i m i n  t o  f l o a t  * /

/ *  conver t  g iven  tmax to  f loa t  t /

/ *  i f  s n i n  &  s n a x  n o t  g i v e n . .  * /

/ *  s n i n  d a f a u l t s  t o  O . 1  4 /

, / *  s n a x  d c f a u l t s  t o  0 . 9  * /

/ *  smin  & snax  are  g iven i /

/ *  c o n v e r t  g r v e n  s m l n  t o  f l o a t  * /

/ *  c o n v e r t  g i v e n  s m a x  t o  f l o a t  t /

/ *  g € t  s t o r e  f f a g  * /

/ *  compule  ay

/+  comFute  by

i f  (verbose)

p r i n t f ( "  A y [ 7 d 1  =  7 , f \ t B y t 7 d ]  =  7 , f U " ,  / *  p r i n t  r e s u f t s  * /

n n ,  a y t  ,  n n ,  b y t )  ;

i f  ( s t o r e f l a g  ! =  ' n ' )  
/ *  r I  s t o r c  f l a g  n o t  s e r  t o  ' t ' .  t /

{
a y l n n l  =  a y t ;  / *  s t o r e  n e w  a y  * /

b y l n n l  =  b y t ;  / *  s t o r e  n e w  b y  * /

i f  ( v e r b o s e )

p r i n t f ( "  N e c  v a l n e s  s t o r € d . \ n " ) ;  / t  s a y  r c  s i o r e d  n e t s  a y  &  L y  * /

]
,

/ r * * * * * * * * * * * r * * * * * * * * + * * * * * * * * * * * * * * * r * * * * * * * * * * * *  * * * * * * * i * * /
/*  separateo */
/ * r * * * * * * * * * * * * * * * * * * * * * * . + * * * * + * *  * * * r * * * * * * * * * * * * *  + + * * * * * * * * *  * * * * * * * * * * * * *  * * * /

, - - - t /

/ *  l o o p  c o u n t e r s  * /

/ *  open a f1  f i les */------------*/

i f  ( ( i n f p  =  f o p e n ( e n v - v a l u e I F 0 R M A T T E D I , " r " ) ) = = N U L L )

t
p r i n t f  ( "  E r r o r  o p e n j . o g  J o r m a t t e d  f i l e  \ " 7 . s \ " . \ n "

env valueIF0nMATTED] )  ;
reiurn;

]
i f  ( ( s e p 1 = l o p e t r ( € n v _ v a l u e I M I S S I N c ] , " u " ) ) = = N U L L )

{
p r i n ! . f  ( "  E r r o r  o p e n r n g  I  r ' l  e  7 , s \ n "  ,

e n v  v a l u e [ M T S S ] N C l  ) ;
retulo;

)
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i f  ( ( s e p 2 = f o p e n ( e n v  v a l u e [ s I N c L E ] , " t " ) ) = = N U L L )

{
print f  ("  Error opening f i le 7.s\n",

env value ISINGLE] )  ;
return;

]

/*--- -- ----------- --- */
/ *  coDv over  the  f i rs t  th ree  header  } ines t /

+ /

r B < ! r  \ r L r

f p u t s ( s t r , s e p 1 ) ;
f p u t s ( s t r , s e p 2 ) ;
i n p u t s  =  a t o i ( s t r ) ;
s t r I s t r l e n ( s t r ) - 1 ]  = ' \ 0 '  ;
strcpy (env value I INPUTS] ,  str)  ;

f g e t s ( s t r ,  2 0 0 ,  i n f p ) ;
f p u t s  ( s t r ,  s e p l )  ;
f p u t s ( s t r , s e p 2 ) ;
o u t p u t s  =  a t o i ( s t r ) ;
s t r I s t r l e n ( s t r )  1 ]  =  ' \ o ' ;

s L r c p y  ( e n v - v a l u e [ O l J T P U t S l , s '  t  )  .

f g e t s ( s t r ,  2 0 O ,  i n f p ) ;
s t r u c t u r e s  =  a t o i ( s t r )  1 ;
s p r  i n t f  ( s t r ,  " 7 , d \ n " ,  s l  r u c r  u r  e s )  i
f p u t s ( s t r , s e p l ) ;
f p u t s ( " 1 \ n " , s e p 2 ) ;
s t r I s t r l e n ( s t r ) - 1 ]  = ' \ 0 '  ;
s t r c p y  ( e n v  v a l  u e  f  S T R U C T U R E S I  . s t r )  ;

/*  number of inputs */

/ r  c o p y  t o  " m i s s i n g "  f i l e  * /

/ *  c o p y  t o  " s i n g l e "  f l l e  * /

/*  copy to " inputs" env var iable */

/*  remove f inal  newLine */

/*  copy to env var str ing */

/*  nunbcr of outputs

/ *  c o p y  r o  " n i s s i n g "  f i f e

/ *  c o p y  r o  " s i n g l e "  f i l e  * /

/*  copy to "outputs" env var iabfe */

/ *  r e m o v e  f i n a l  n e w l l n e

/ +  n u n b e r  o f  s t r u c t u r e s

/ *  s u b t r a c t  o n e  f o r  n i s s i n g  s t r u c  * /

/*  copy to ' rstructures' t  env var */

/ *  c o p y  t o  " n i s s i n g "  f i l e

/ *  c o p y  r o  " s i n g l e "  f i l . e

/ *  r e m o v e  f i n a l  n e w l i n e

/ *  copy  to  env  var  s t r in€ !

/* */

f o r  ( 1 = 0 ;  i < ( i n p u t s + o u t p u t s ) * s e p n u m ;  i + r )

{
f S e t s ( s r r ,  2 0 0 ,  u f p ) ;
f p u t s ( s t r ,  s e p l ) ;

)

/*---....- - ----*/
/ *  r e a d  i n  ( i n p u t s + o u t p u t s )  L r n e s  a n d  c o P y  t h e n  t o  t h c  " l l t t l e "  + /

/ *  f i l e  ( " n i s s i n g " ) + /

/ *  f i l a  ( ' c i h r l p n )

/ *  " b i c "  f i l e  ( " m i s s i n g " ) */

/ *  c l o s e  a L 1  f i l e s

/* -------------*/

f c l o s e  ( i n f p ) ;

f c l o s e  ( s e p 1 ) ;

f c f o s e  ( s e p 2 )  ;

/*-- - -----*/

f o r  ( i = 0 ;  i < ( i n p u t s + o u t p u t s ) ;  i + + )

{
f g e t s  ( s t r ,  2 0 0 ,  i n f p )  ;
f p u t s  ( s t r ,  s e p 2 )  ;
]

/* -----------*/
/*  read in ( inputs outputs)*(structures sepnm 1) l ines and copy them to the */

/*  -  --------------* /

f o r  ( i - 0 ;  i < ( r n p u t s r o u t P u t s ) * ( s t r u c t u r e s  s e P n m  l  )  r  i  r ,  )

t
f g € t s ( s t r ,  2 0 0 ,  l n f p ) ;
f p u t s ( s t r ,  s e p l ) ;
)

/*--------------- - */
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/************************************************** **********/
/ *  s e t  O  * /

/********************************* **********/

v o i d  s e t  ( v o i d )

{
c h a r  s t r [ 5 0 ]  ;
short  found = 0;

r f  / l . r r - h n r . n i < + r f t l ' ! \ \

{
for ( i=0; i<ENVIRONMENT; i++)

{
s t r c p y  ( s t r ,  e n v  v a r  I i ]  )  ;
s t r c a t ( s t r ,  " = " ) ;
s t r c a L ( s t r , e n v  v a l u e I  r  l )  ;
p r i n t f  ( "  7 ,  3 0 s "  ,  s t r )  ;

i t  ( r ' / ,2)

p r i n t f  ( " \ n " ) ;

)
#if  (ENVIRONMENT 7. 2)

p r i n t f ( " \ n " ) ;
#endif

)
e 1 s  e

{
J o r  ( i = 0 ;  r < E N V I R 0 N M E N T ;  i + + )

r f  ( ! s t r c m p ( c m d s t r [ 1 ] , e n v  v a r I i ] ) )

{
strcpy (env value Li l  ,  cndstr [2]  )  ;
f o u n d  =  1 ;
b r e a k ;
)

i f  (  !  found)

l f  ( ( s t a t f p = f o p e n ( e n v  v a f u e

ISTATUSFILE] ,  "  r  "  )  )  ==NULL)

{
p r i n l f  ( "  c i l n o t  o p e n  f r l e  7 " s \ n " ,

env-va1ue ISTATUSFILE]  )  ;

re tu rn ;

)
f g e t s  (  s t a t l i n e ,  1 O 0 ,  s t  a t f P )  ;
n r i n i f a c r r i l i h a l

f c l o s e ( s t a t J p ) ;

)

/ *  i f  n o  a r g m e n t  v a s  g i v e n . .  * /

/ .  t h P r  n r  i n 1  v i l r ' ,  '  n r  1 '  + /

/ *  -  - e n v i r o r m e n t  v a r i a b l e s  * /

/ *  i f  i  i s  o d d . .

/ *  . . p r i n t  a  n e w f l n e

/ *  r f  i o t a l  n u m  o f  v a r s  i s  o d d . .  * /

/ *  . . p r i n t  a  n e u l i D e  * /

/ *  c h e c k  a g a i n s t  e n v  v a r  l r s t  * /

/ *  i f  t h r s  v a r  f o u n d  i n  l i s t .  .  * /

/ *  c o t y  i t s  v a l u e  t o  c n v  v a r u e  * /

/ *  . a n d  s t o p  s a a r c h  * /

p r i n t f ( "  v a r l a b l e  \ " 7 , s \ "  n o t  f o u n d \ n " ,

c n d s t r I l ] ) ;

I o a d  e n v o ;  / *  r o a d  e n v i r o r m e n t a l  v a r i a b l e s  * /

l

/**************** **********/
/ *  shoE-s ta tus  O * /

/ * * * * * * * * * * * * * * * * * * * * ' * * * * * * * * * * * * * * * * * * * + + * * * * * * * *  * * * * * * * * * * /

v o i d  s h o w _ s t a t u s  ( v o i d )

{
char  s ta t l ine  [10o]  ;

/ *  o p e n  s t a t u s  f i l e

/ *  r e a d  i n  o n e  1 i n e . .

/ a  : n d  n r i  h t  i  i

/ *  c l o s e  t h e  s t a t u s  f i f €
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/********************************* **********/
/ .  t r a r n O  '  /
/* ** ** * * ** ** * * * ** * * ** * * ** ** *** ** * * **** * * *** * * **** * * ** * * *** ** * * ** * * * * *** * * ** * * */

v o l d  t r a i n ( v o i d )

{

/ *  open f i les  &  read nmber  o f  lnpu t  i ld  ou tpu t  nodes

/*  yes/no answer to pause query */

+ /

/*------ */
/ *  se t  s ta r t  epoch nMber  * /

/*  -* /

i f  ( resume- f lag  == 1)

s ta r t_epoch =  resuneePoch;

e l s e

s t a r t _ e p o c h  =  1 ;

/* */

/ * . . . . - - . - - - . - - - - - . .  
- - - - - - - - - - - - - - " -  - - -  1 /

i f ( ( t r n f p = f o p e n ( e n v  v a l u e I T R A I N I N G ] ,  " r " ) ) = = N t l L L )  / *  o p e n  t r a i n i n g  d a t a  f i l e  * /

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  j / , s \ n " ,

e n v  v a I u e | T R A I N I N C I ) ,

re tu rn ;

)
i f  ( ( e r r f p = f o p e n ( e n v  v a L u e I E R R O R D A T I ,  " w " ) ) = - N I J I - I - )  / *  o p e n  e r r o r  o u t p u t  f i l e  * /

{
p r i n t f ( "  C a n n o t  o p e n  f i l e  7 s \ n " ,

env-va  I  ue  I  ERRoRDATI  )  .

)
f g e t s  ( t i n e ,  L I N E S I Z E ,  r r n f p ) ;
s s c a n f  ( l i n € ,  " 7 1 d "  ,  & i n p u t s )  ;
spr int f  (env-value I INPUTS] ,  "7,1d" ,  inputs) ;

f g e t s  ( 1 i n e ,  L I N E S I Z E ,  t r n f p ) ;
s s c a n f  ( I i n e , " 7 , l d " ,  & o t r t p u t s )  ;
spr int f  (  env-value t0UTPUTSI ,  "7.1d" ,  outputs )

f g e t s  ( 1 i n e ,  L I N E S I Z E ,  r r n f p ) ;
s s c a n f  ( 1 i n e , " 7 . I d " ,  & s t r u c t u r e s )  ;
spr int f  (env value ISTRUCTURES], "7,1d",

s t r u c t u r e s ) ;

r e v i n d ( t r n f p ) ;

r f  f r c e n n p  f l a d  = =  1 )

load_ i le igh ts  O ;

e l  s e

a 1 1 o c  O  ;

/ *  i n i t i a l i z e

/ *  N . B .  S m l t h  s u g g e s t s  t h e  f o l l o w i n g  f o r  t  w e i g h t  i n i t i a L i z a t i o n

/ *  read in  n rmbar  o f  lnpu t  nodes  * /

/ *  read in  nmber  o f  ou tpu t  nodes* /

/ *  read in  nuber  o f  s t ruc tu res  * /

/ *  r e r i n d  t o  s t a r t  o f  f i l e  * /

/ '  , r  , o s , , t r , n p  a  , , , n  . /

/ *  . . t h e n  l o a d  o f d  r e i g h t s  * /

/ *  e lse  a l loca te  nen fo r  ne tvork  * /

/ *  i f  (  ( j 7 . 2 ) = = 0 )

/ *  9 ( j , k )  =  1 . 0 ;

/ *  e l s e

/ *  ! r ( j , k )  1 . 0

r f  j  i s  e v e n . .
. . i n i t  w  v e i g h t  t o  + 1

i f  J  i s  o d d . .
. . i n i t  E  v e i g h t  t o  - 1

/ *  bu t  th is  doesn ' t  seen to  work ;  d r  comand shot rs  s  {e igh ts  aL1 go  to  * /

/ +  O o r l

/ *  ln i t  rddom nmber  genera tor  * /

/ *  i n i t i a l i z e  v  w e l g h t s . .  * /
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V ( i , j )  =  s e e d r u l t * r e d 4 O  ;
E _ v ( i , j )  =  k a p p a ;
)

f o r  ( j = 0 ;  j < = h i d d e n ;  j + + )
for (k=0 k<=outputs; k++)

{
1 f  ( r e s w e _ f l a g  ! =  1 )

} j ( j , k )  =  s e e d m u l t * r a n d 4 O  ;
E  v ( j , k )  =  k a p p a ;
]

/ *  . . t o  r i l d o n  v a l u e s  v [ i ]  [ j ]  * /

/ .  i n i t  l e a r n i n g  r a t e  * /

/ *  i n i t i a L i z e  r  w e i g h t s _  .  * /

/ l  . . t o  r e d o n  v a l u e s  w f j l  [ k J  * /

/ r  i n l t  l e a r n i n g  r a t e  * /

/ *  in i t  the  er ro r  to  0

/ a  z e r o  d e l _ v l )  d d  d e t  r f l

/ *  ge t  po in ts  o f  exmpfe

f o r  ( i = 1 ;  i < - o u t p u t s ;  r + + )
{
f g e t s  ( l j . n o ,  L I N E S I Z E ,  r r n f p ) ;
s s c u f  ( l i n e ,  " 7 . e \ n " ,  i a r g e t + i ) ;
)

n e t q o r k ( 1 ) ;

]
n e t  u p d a t e _ v e i g h t s O ;

e r r o r  * =  0 . 5 / ( o u t p u t s * s t r t r c t u r e s )  ;

i f  ( ( m  7 ,  d e l p r t ) = = o )
t
p r i n t f  ( "  I p o c h s :  7 t d \ t , , ,  n ) ;

i f  ( e r r o r  > =  1 . 0 e  6 )

/ *  run  the  ne tqork  r /  teach ing  * /

/ *  u p d a i e  w e i g h t s  f o r  t h i s  e p o c h  * /

/ *  c a l c u f a t e  e r r o r  f o r  t h i s  e p o c h + /

/ *  p r in t  msg every  DELpRT epocns  * /

p r l n t f  ( " E r r o r  =  7 , f \ n , , ,  a r r o r ) ;  / +  p r l n t  o u t  e r r o r  1 n  f  f o r m a t
e l s e

p . r n t f  ( " E r r o r  =  7 e \ n , , ,  e r r o r ) ;  / *  p r i n t  o u t  c r r o r  r n  e  f o r n a r

i f ( ! s t r c n p ( e n v  v a l u e [ D E B U C I , ' o n . ) )  l *  i f  d e b u g  m o d e  1 s  o n .{
P r i n t f ( r r  0 u t p u t s : , ' ) ;
J o r  ( i = 1 ;  i < : o u t p u t s -  ) + + )

p r u r f  ( , , z e \ t , , , Y ( i )  )  ;
p r i n t f ( " \ n " ) ;

p r i n t f ( "  U n - s c a L e d :  " ) ;
f o r  ( i = 1 ;  i < = o u t p u t s .  + + )

p r i n t f  ( " 7 , f  \ t , , ,  ( y ( i )  b y t i l  ) / a y  t i l  )  ;
p r i n t f ( " \ n " ) ;

l

i f  ( s t a t u s )

{
i f  ( ( s t a t f p = f o p e n ( e n v , v a f u e  / *  o p e n  s t a t u s  f i l e  * /

t S T A T U S F I L E I ,  " T "  )  ) = = N U L L )
{ /*  error openlng f i te */
p r i n r f ( ' ,  C a n n o t  o p e n  f i l e  7 , s \ n , , ,

env value ISTATUSFILE] )  ;
s t a t u s  =  0 ;
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s t r c p y ( e n v  v a l u e I S T A T U S ] ,  " 0 " )  ;
]

e l s e  / *  f i L e  o p e n e d  o k  * /

t
f p r i n t f  ( s t a t f p ,  / *  p r i n t  e p o c h  n r m  t o  s t a t  f i l e  * /

"  E p o c h s :  7 1 d \ t "  , m )  ;
f p r i n t f  ( s t a t f p ,  / *  p r i n t  e r r o r  t o  s t a t  f i L e  * /

' E r r o r  =  Z e \ n " , e r r o r ) ;
f c l o s € ( s t a t f p ) ;  / *  c l o s e  f l 1 e  s o  w e  c a n  r e a d  i t  * /

]
I

f n r r n r f  a c r r f h  " y l d \ t y F \ n "  / *  s e n d  e r r o r  t o  f i f e  * /

m ,  e r r o r ) ;
i f  ( ( p a u s e > o )  & &  ( ( n 7 , p a u s e ) = = 0 ) )  / *  i 1  p a u s e > o  &  t i m e  t o  p a u s e . .  * /

{
p r r n t f ( "  C o n t r n u e  ( y / n / r / e ) 7  " ) ;  / *  a s k  r h e t h e r  t o  c o n t i n u e  * /

g e t s ( m s ) ;  / *  r e a d  i n  d s F e r  * /

i f  ( t o L o r e r ( a n s  [ 0 ]  ) = = ' n ' )  / *  r f  r e  d o n ' t  c o n t i n u e .  .  * /

b reak ;  / *  .  then  break  ou t  o f  b ig  loop * /

e l s e  i f  ( t o l o w e r ( a n s [ 0 ] ) = = ' r ' )  / *  \ f  q e ' r e  t o  s t o p  p a u s i n g . .  * /

p a u s e  =  - 1 ;  / *  , , t u r n  o f f  t h e  p a u s e  f l a g  * /

e l s e  l f  ( t o f o r e r ( a n s t O l ) = = ' e ' )

{
P r i n t f ( "  P a n s e = " ) ;
f g e t s ( a n s , 1 0 , s t d i n ) ;

pause =  a to i  ( i l s )  ;

a n s l s t r l e n ( a n s )  1 ]  = ' \ 0 ' ;  / *  r e m o v e  f i n a l  n e w l i n e  * /

s t r c p y ( e n v  v a l u e I P A U S E ] , a n s )  ;

)
)

]
( ( d e l a n a l y z e  t =  I )  & . k  ( ( n  7  d e L e a l y z e ) = - 0 ) )

{
s p r i n t f  ( d a f i l e n m e ,  " i 7 , 0 7 d . s g t " ,  m )  ;

i f  ( ( d m l f p = f o p e n ( d a f i l e n a m e ,  / *  o p e n  s t a t u s  f i l e  * /

"sb"  )  )  ==NULL)

{  /  +  e r r o r  o p e n i n g  { i f e  * /

p r i n t f ( "  C a n n o t  o p e n  f i l e  7 , s \ n " ,

" d a f i l e n m e " ) ;

d e l i l a l y z e  =  * 1 ;

s t r c p y ( e n v  v a l u e [ D E L A N A L Y Z E ] , "  1 " )  ;

l

e l s e  / *  f r l a  o p a n c d  o k  * /

{
f w r i t e ( & i n p u t s ,  s i z e o f ( l o n g ) ,  1 ,  d a n t f p )  / *  u r l t e  n u n  o f  l n p u t  n o d a s  + /

f s r i t e ( & h i d d e n ,  s i z e o f ( l o n g ) ,  1 ,  d a n l f p ) ;  / *  w r i t e  D u n  o f  h i d d e n  n o d e s  * /

f w r i t e ( & o u t p u t s ,  s i z e o f ( l o n g ) ,  1 ,  d i l l f p ) ;  / *  w r i t c  n u n  o f  o u t p u t  n o d a s  + /

f u r i t e ( v ,  s l z c o f ( f l o a t ) ,  / *  w r i t e  v  { e i g h t s  * /

( i n p u t s + 1 ) *  ( h i d d e n + 1 ) ,  d m l f  p )  ;

f w r l t e ( r ,  s l z e o f ( f 1 o a t ) ,  / *  v r r t e  w  s o i g h t s  * /

( h i d d e n + 1 ) * ( o u t p u t s + 1 ) ,  d a n l f p )  ;

i f

f c t o s e  ( d a n l f p )  ;

I
l

i f  (error < error l im)
break;

r e q i o d ( t r n f p ) ;
]

p r i n t f  ( "  N e t s o r k  i s  t r a i n e d !  \ n " )  ;

i f  ( e r r o r  > =  1 - 0 e  6 )
^ - i - i  i  l '  ' / ' \ . "  - . . ^ . \ '

e 1 s  e

p r i n t f  ( "  L a s L  p r r o r  7 e \ n " ,  e r  r o r  )  :

f c l o s e  ( t r n f p ) ;

f c l o s e  ( e r r f p ) ;

]

/ *  c f o s e  f i f e  s o  r e  c u  r e a d  i t  * /

/ *  i f  c e ' r e  b e l o w  e r r o r  l i m i t . .
/ *  r h - -  

" r ^ ^ _  '  
- l n 8

/ *  g o  t o  s t a r t  o f  e x i l p f e  f i l e

/ *  p r in t  nessage * /

/ *  p r in t  las t  e r ro r  in  f  fo rmat  * /

/ r  h , r r r  l l c t  r ^ t - a 1  . /

/ *  c l o s e  t r a i n i n g  d a t a  f i f e  * /

,u*  c fose  er ro r  da ta  f iLe  * /

/ * - - - - - - - -  e n d  o f  l r l e  L E E D N E T . C  .  - -  -  - .  * /



Appendix C

Listing of Program F0RMAT01 . C

/ t  Fr le F0R|4AT0r C

o a v i d  G .  S i n p s o n
Department of Physics
Universi ty of Maryl i ld,  Raltrmore County
Catonsv i l le ,  Mary land

T h i s  d a t a  i s  f o r  t h e  N i t 5 0 l  P d t 5 0 l  ( 1 0 0 )  s r L r f a c e  ( f c c )
( S e e  D e r r y ,  M c v e y ,  R o u s ,  " S u r f a c e  S c i e n c e " ,  v .  3 2 6 ,  p p .  5 9  6 6  ( 1 9 9 5 ) . )

I h e  o r i g i n a l  d a t a  f o r  t h i s  f u n c t i o n  ( f i l e  I V . D A T )  a p p e a r s  r n  1 1  c o L M n s

of  f loa t ing  po in t  nubers

Cyc le  o rdcr

tnergy
d12
d23
d34

t r N i 2
7 N i 3
I n t e n s i t y  1
Intensity 2
Intensity 3
I n t e n s i t y  4

2 - ' /
9 - 1 4

1 6  2 1
2 3  2 8
3 1  3 3
3 6 - 3 8
4 1  4 3
47 s7
6 1  7 1
t 5  8 5
8 9  9 9

cons t  .

107
1o7.
ro'/,

r60
L

I

I

6

6
5

A

A

7,
f,
,I

30 348 eV
1  . 8 7 0 0  A
1  . 8 7 0 0  I
1  . 8 7 0 0  I
o s o  7

50 100 7.
3o-7 o '/,

178
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L E E D N E T  f o r n a t  f o r  d a t a  ( A S C I I  t e x t  f i l e ) :

Number of input Dodes, Ni
Nunber of output nodes, Nt
NDDber of structures . in Ji)e,  Ns
Structure #1 1st input (bem 1 intensity at fosest energy)
Structure #1 2nd input (bem 1 intensity)

Sttucture #1 Ni th input ( Iast bem intensity at highest energy)
S t r u c t u r e  # 1  l s t  o u t p u t

Structure #1 last output

Structure #2 1st input

Structure #2 last output

Structure #Ns last output

3 I  ine* /

header* /

N i  * /

p t s  * /

N t  * /

p t s  * /

r /

The f i le  fo rmat  cons is ts  o f  a  3  l ine  header  tha t  de f ines  ihe  nmber  o I  * /

inpu ts ,  nwber  o f  ou tpu ts ,  and nMber  o f  s t ruc tu res  in  the  f i le .  Th is  * /

header  i s  fo l lo red  by  N i  inpu ts  i ld  Nt  ou tpu t  fo r  the  1s t  s t ruc tu ra ,  * /

N i  i n p u t s  a n d  N t  o u t p u t s  f o r  t h e  s e c o n d  s t r u c t u r e ,  e t c . ,  i h r o u A h

Nl inputs and Nt outputs for the Ns th sirucrure. The tolal  nwber of * /
l i n e s  i n  t h e  f i l e  s h o u l d  b e  3  +  N s * ( N i + N t )

*/
To wr i te  your  ou  func t ioD to  fo rmat  your  da ta  in to  the  above LEEDNET * /

f o r n a t ,  o p e n  m  i n p u t  " o r i g r n a l , , a n d  o u t p u t ' , f o r n a t t e d , , f i l e  a s  s n o u n  * /

h e r e ,  j . n c l u d e  r h a t e v e r  l o g i c  t s  n e e d e d  t o  f o r m a t  t h e  f i l e ,  a n d  c l o s e  t /

t h e  f i l e s  a t  t h e  e n d .  I n  t h r s  e x m p f e ,  f o u r ' , t e n p , , f i f e s  a r e  u s e d  t o  * /

sor t  the  da ta  fo r  the  ind iv idua l  beams before  co tca tenat ing  them_ * /

*/

/*  st i ldard i /o */

/*  stmdard l ibrary */
/ *  s t r i n g  f u n c t i o n s  * /

/ *  l e e d n e t  s p e c i f i c  d e f l n i r i o r s  * /

S i n c l u d e  < s t d i o . h >

# i n c l u d e  < s t d l i b . h >

# i n c l u d e  < s t r i n g . h >
# i n c l u d e  " l e e d n e t . h "

/ *  f  o m a t o l  o

/ .  l o c a l  v a r i a b l e  d . L l a r  a t l o n J

/*-------------- -------*/
l o n g  1 ,  J ,  k ;  / *  l o o p  c o u n t e r s  + /
d o u b l e  e ,  d 1 2 ,  d 2 3 ,  d 3 4 ,  p N i l ,  p N r 2 ,  p N i 3 ,

1 1 ,  i 2 ,  i 3 ,  i . 4 ;
chu str  [200] ;
F I L E  * i n f p ,  r o u t f p ,  * t e n p 1 ,  * t e n p 2 ,

* t e m P 3 ,  * t e m p 4 ;
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/ * - -  -  * /
/ *  open a l l  f i l es  * /

i f  ( ( i n f p = f o p e n ( e n v  v a l u e I 0 R I G I N A L ] ,  " r " )  ) = = N I ' L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  o r i g i n a l  f i l e  \ " 7 s \ " . \ n " ,

env-value [0RIcINAL] )  ;
return;

]
i f  ( ( o u t f p = f o p e n ( e n v , v a l u e I F 0 R M A T T E D ] ,  " w " ) ) = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f o r n a t t € d  f i l e  \ " 7 s \ " . \ n " ,

env value [F0R.I,IATTED] ) ;
return;

]
i f  (  ( t e n p l = f  o p e n ( " t e n p 1 . d a t " ,  " r " )  ) = = N U L L )

t
'  I l  e  T I : Y | l  . D A  I \ n "  ) ;

teturn;

]
i f  (  ( t e n p 2 = f  o p e n ( " t e m p 2 . d a t " ,  " w " )  ) = = N U L L )

{
p r i n l f  ( "  E r r o r  o p e n i n g  f i l e  T t l i l P 2 . D A T \ n " ) ;
return;

)
i f  (  ( t e m p 3 = f  o p e n ( " t e m p 3 . d a t " ,  " w " )  )  = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n S  f i  l e  T E M P 3 . D A T \ n " ) ;
r e t u r n ;

]
i f  ( ( t e n p 4 = f o p e n ( " t e m p 4 - d a t " , " { " ) ) = = N U L L )

{̂
r , n i  f  . "  F , r ^ '  , , h d n , n n  t  ' l o  l F M P 4 . D A T \ n ' ) ;

return;

)

/* -------------- */
l s  . t ^ r t  o f  n a r h  l ^ ^ h  . /

/*----------- - -----*/
fpr int f  (outfp,  "7.d\n" ,  inputs )  ;
fpr int f  (outJp, "7.d\n" ,  outputs )  ;
fpr int f  (outfp,  "7d\n" ,  structures) ;

f o r  ( k = 0 ;  k < s t r u c t u r e s ;  k + + )

{
n i i h r f ( "  q r  n , . r , , r F  

' l d \ n '  
k ) ;

/ *  v r r te  one se t  o f  in tens i t ies  ou t  to  temp f i fes  * /

/* ------------ */
f o r  ( j = o ;  J < = k ;  j + + )

f o r  ( i = 0 ;  l < n u n p t s ;  i + + )

{
sscanf (str ," | f f  fJf  ' / ,Lf  ' / , I t  lJt  f )1"

" 
' /Jt  f , re 7,Ie f , Ie ' / , Ie",

A e ,  & d 7 2 ,  & d 2 3 ,  & d 3 4 ,  & p N i 1 ,
& p N i 2 ,  & p N i 3 ,  & i 1 ,  & i 2 ,  & i 3 ,
& i 4 ) ;

t p r ) n t f  ( t e m p 1 . ' Z l e \ n " ,  r l ) i
f p r i n t f  ( t e m p 2 ,  " Z l e \ n " ,  i 2 ) ;

I p r r n L I  ( t e m p 3 .  ' 7 , 1 e \ n " .  . i 3 ) ;
f p r i n t f  ( t e m p 4 ,  " 7 I e \ n " ,  i 4 ) ;
f o r  ( j = 0 ;  j < s t r u c t u r e s ;  j + + )

f g e t s  ( s L r ,  2 0 0 ,  i n f p )  i
)
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/ ;  done c r i t ing  to  temp f i les ,  so  c fose  th€n * /

/*-------"- -------------*/

f c l o s e ( t e n p 1 ) ;
f c l o s e  ( t e n p 2 )  ;
f c l o s e ( t e n p 3 ) ;
f c l o s e  ( t e m p 4 )  ;

/*  -  * /
/*  open temp f i les back up (this t ime for reading),  i ld pr int  out their  * /

, / *  c o n t e n t s  i n t o  i v - o u t  * /

/ * - - - -  -  x /

i f  (  ( t e m p 1 = f  o p e n ( " t e m p 1 . d a t " ,  " r " )  ) = - N U L L )
t
p r i n t f  ( "  E r r o r  o p e n i n g  {  r  I e  T E M P I . D A T \ n " )  r
teturn;

]
f o r  ( i = 0 ;  i < n u m p t s ;  i { ' + )

{
f  g e t s  ( s t r , 2 0 0 , t e m p 1 )  ;
s s c a n f  ( s t r , " 7 . 1 e " ,  & i 1 ) ;
f p r i n t f  ( o u t f p ,  " 7 . 1 e \ n " ,  i 1 ) ;

)

i f  (  ( t e m p 2 = f  o p e n ( " t e n p 2 . d a t " ,  " r " )  ) - - N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f i l e  T E M P 2 . D A T \ D " ) ;

r e t u r n ;

]
f o r  ( i = 0 ;  i < n u m p t s ;  i  r + )

t
f g e t s  ( s t r , 2 0 0 , t e m p 2 )  ;
s s c a n f  ( s t r ,  " 7 . 1 e "  ,  & i 2 )  ;
f p r i n t f  ( o u t f p ,  " 7 . 1 e \ n " ,  i 2 ) ;

)

i f  ( ( t e m p 3 = f o p e n ( " t e m p 3 . d a t " ,  " r " ) ) = = N U I . L )

t
h r i n r  r  a , '  F r r n r  n n p n i , ' d  I  i  I e  T E I I P 3 . D A T \ n ' ) ;

)
f o r  ( i = 0 ;  i < n u m p t s ;  i + + )

{
f g e t s  ( s t r ,  2 0 0  ,  t e m p 3 )  ;
s s c a n f  ( s t r , " 7 , 1 e " ,  & i 3 ) ;
I p r r n t f  ( o u t f p ,  ' 7 , 1 e \ n " ,  r 3 ) ;

]

i f  (  ( t e n p 4 = f  o p e n ( " t e m p 4 . d a t " ,  " r " )  ) = = N U L L )
{
p r i n l f  ( "  E r r o r  o p e n i n g  f i l e  T E M P 4 . D A T \ n " )  i
return;
I

f ^ r  r i = n  l " n ! ' n n r c .  i + + l

t
r B g U J  \ ' L I

s s c a n f  ( s t r , " 7 L e " ,  & i 4 ) ;
f p r i n ! f  ( o u t f p ,  " l l l e \ n " ,  r 4 ) ;

]

/* --------------- - */
/*  pr int  output paraneters to iv.out * /

/* ---------'---- - -*/

I p r r n r l  ( o u t f p , " 7 , l f \ n 7 , 1 r \ n % I J \ n " ,  p N r  I ,  p N i 2 ,  p N i 3 ) :
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f c l o s e ( t e n p l ) ;

I C t O S e t t e m p z /  i

f c l o s e ( t e m p 3 ) ;

fc lose  ( temp4)  ;

/* --------------*/

i f  (  ( t e m p l = f  o p e n  ( i ' t e m p 1 .  d a t " ,  " s "  )  )  = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f i l e  T E M P l . D A T \ n " )  ;
return;

l

i f  (  ( t e n p 2 = f  o p e n  (  " t e n p 2 .  d a t " ,  " w "  )  ) = = N t J l . l . )

t
'  '  t e  l " E l 4 l ) . D A T \  n !  )  ;

return;

)
i f  (  ( t e m p 3 = f  o p a n ( " t e n p 3 . d a t " ,  " E " )  ) = = N U L L )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f i L e  T E M P 3 . D A T \ n " ) ;

r e t u r n ;

]
i f  (  ( t e n p 4 = f  o p e n ( " t o n p 4 .  d a t " ,  " w "  )  ) = = N U I . l , )

{
p r i n t f  ( "  E r r o r  o p e n i n g  f i l e  T E M P 4 . D A T \ n " ) ;

return;

)
r e c i n d ( i n f p ) ;

]

/ *  c l o s e  a 1 L  f i l e s

/ *  -  -  + /

r c l o s e  r  l n r p /  i

f c L o s e  ( o u t f p ) ;

J c l o s e  ( t e m p 1 ) ;

f c l o s e  ( t e m p 2 ) ;

f c l o s e  ( t e m p 3 ) ;

f c l o s e  ( t e m p 4 ) ;

]
/ . - - - - - -  e n d  o f  f i  l e  F O R . I 4 A T O I . C  ' /



Appendix D

Listing of File LEEDNET. H

/*  Fi le LEEDNET . l l

# d e f i n e  L I N E S I Z E  9 5

ddef ine ENVIRoNMENT 39

# d e f i D e  o R I C I N A L  0
ddef ine FoMATTED 1
fdefrne MISSINC 2.
# d e i i n e  S I N C L E  3
#def ine PRUNEO 4
#def ine TRAINING 5
#define ERRoRDAT 6
#def ine DUMPFILE 7
#def ine SELPFILE I
#def ine PLoTFILE 9
#def ine INPUTS 10
# d e f l n e  H I D D E N  1 1
#def ine 0UTPUIS 12
$def ine FI 'NCTIoN 13
# d e f r n e  E P O C H S  \ 4
#def ine DFILPRT 15
#def ine i lU 16
#def ine KAPPA 17
#def ine PHI 18
#def ine TIIETA 19
#deJine | I I i IGHTFILE 20
#def ioe SI 'ED 2l
#def ine NUIIIPTS 22
#def ine STRUCTURES 23
# d e f r n e  S E P N T H  2 4
# d e f i n e  S K I P  2 5
#d€f ine STATUS 26
fdef ine STATUSFILE 27
#def ine ADAPTM 2A
#define PAUSE 29
#def ine DEBUG 30
#def ine EEA}IS 31
#def ine ERRoRLIM 32
#def ine ANLINFILE 33
#d€f ine ANLOUIFILE 34
#def ine BEAMOU|FILE 35
#def ine DELANALYZE 36
#def ine RESUMEEPoCH 37
tdef ine SEEDMULT 38

/ +  s v e  a f  i r p u t  l 1 l e s  * /

/ *  #  o f  e n v i r o m c n t  v a r i a b f e s  * /

o r i g i n a l  d a t a  f i l e  n m e  * /

f o r n a t t e d  d a t a  l r l e  n a m e  * /

m r s s r n g  f  s t r u c t  f i l e  n a m e  * /

1  s t r u c t u r e  I i L e  n a m e  * /

p runed da ta  f i le  name * /

t r a : i n i n g  d a t a  f i l e  n m e  * /

e r r o r  v s  e p o c h  f i l e  n m e  * /

dunp f i le  nme r /

h e l p  f i r e  n m e  + /

p l o t  d a t a  f i l e  n a n € r /
number  o f  inpu t  nodes  * /

nunber  o f  h idden Dodes * /

number  o f  oDtp) t  nodes  * /

d a t a  c o n v  J u n c t r o n  D m b e r  * /

n u n  o f  e p o c h s  t o  l e a c h  ' /

n u m  o f  e p o c h s  t o  p r t  m e s s a g e * , /

nonentm ra ie  fo r  Learn jng  * /

m t  t o  i n c r  I e a r n i n g  r a t a  * /

f a c t o r  t o  n u l t  1 € a r n i n g  r a t e * /

c t r f  t i n e  p e r i o d  f o r  a v g ' i n g * /

saved ne t  se igh ts  f i le  nme * /

seed fo r  rand nm genera tor  * /

n u m  o f  p o i n t s  i n  i ( v )  c u r v e  * /

nun s t ruc tu res  in  da ta  se t  * /

s t ruc tu re  nm to  ex t rac t  * /

in te rva l  to  sk j .p  p runed da ta* /

t r a i n i n g  s t a t u s  o n / a f t  l I a E  t /

s ta tus  f i lenme * /

adapt ive  learnrng  ra te  f lag  * /

t ra in ing  pause (€pochs)  * /

debug mode on lo f f  * /

number  oJ  beans in  input  * /

i la lys is  lnpu i  f i l e  + /

a n a l w s i c  ^ , r r h r , r  f i l o  * /

r e b e m  o u t p u t  f r l e

num o f  epochs  to  i la lyze  + /

r @ < , , h a  6 h ^ . h  r , ! , m h o r  t /

random seed mul t ip l re r  * /
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Appendix E

Listing of File LEEDNET. HLP

Fi te  LEEDNET.HLP

++*genera l

a l loc  A l loca te  nenory  fo r  l .he  ne t {o rk

i l a l y z e  A n a l y z e  a  n c i w o r k  J r , , m  r t s  t r a r n i n g  d a l a

ask  Ask  a  t ra ined ne t [o rk  to  p rocess  input

debem Separa te  da ta  se t  in to  rDd iv idua l  bems

dump Dump net {o rk  [e igh ts

d !  D isp lay  ne tpork  uerght

er rv  DrspLay he lp  on  env i ronm€nt  var iab les

e i i r  Qu i t  LEEDNET

format  Re- fo rna t  da ta  lo  LEEDNET fo rmat

he lp  Hefp  on  LEEDNET comands

load Load ne twork  Ee igh ts

Disp lay  menory  usage repor t

nerge  Merge da ta  f i les  togather

p l o t  C e n e r a t e  I ( V )  p l o t  d a t a

prune Pr i lne  po in ts  f ron  a  da ta  se t

qu i t  Qu i t  LEEDNET

randon ize  In i t ia f i ze  rd rdom nrhber  genera tor  f ron  sys ten  t inc

rebem Re-assemble  da ta  sc t  f ron  ind iv iduaf  beams

R e s u m e  a  t r a i n i D g  r D n

save Save ne txork  we igh ts

s c a l e  S e t / d i s p l a y  n € t u o r k  o u t p u t  s c a l i n g  c o n s i d r t s

separa te  Separa te  da ta  in  a  da ta  s€ t

se t  Set /d isp lay  env i ronment  var iab fes

s L a t u s  S h o q  n e t w o r k  L r d i n i n g  s l a L u s

t ra in  Tra in  a  ne tsork

ver  D lsp lay  LEEDNET vers ion  nwber

* * * a l l o c

a l loc  A l loca tes  memory  fo r  the  ne tsork .

The memory  a f loca ted  is  based on  the  number  o f

input ,  h idden,  and ou tpu t  nodes  cur ren t ly  de f ined

( e n v i r o m e n t  v a r i a b l e s  " i n p u t s " ,  " h i d d e n " ,  i l d
' ' o u t p u t s " .  

T h e  n e m o r v  ) s  d y n i l i c d l l y  a l l o . a t e d  o n

t h e  h e a p .

r r + a n a l y z e

a a l y z e  A n a l y z e  a  r e t u o r k  f r o m  r l s  L r a l n r n g  d a t a

"Ana lyze"  reads  the  nMber  o f  inpu ts ,  ou tpu ts ,

i ld  s t ruc tu res  f rom the  " t ra in ing"  f i le .  I t  then

I o a d s  n e t r o r k  v e i g h t s  f r o n  " w e i g h t f i f e " .  F i n a L l y ,

i t  sho{s  each s t ruc tu re  in  " i l f in f i1e"  to  the

network  and compares  the  n{ r twork 's  ou tpu ts  to  the

e r p e c t e d  o u t p u L s  r n  t h e  t r a i l r i n g . l a L a .  
' l h e  

s r a L r s L r c s

on the  f ina l  resu l ts  a re  sent  to  the  f i le  de f ined by

the  env i ronment  vu iab le  "o lou t f1 le . "

ask  Asks  a  t ra ined ne tcork  to  p rocess  input .

Shors  the  f i le  de f ined by  env i roment  var iab fe  "s ing le"

184
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to  the  ne tvork ,  runs  the  ne twork ,  ud  d isp lays  i t s

ou tPuts .

debem Separa te  da tase t  lD to  ind iv iduaf  bems.

T h .  f i l F  d p f i n e d  h v  t h e  e n v i r o m e n t  v a r i a b l e  " f o r n a t t e d "

conta ins  the  LEEDNET* forna t  I (V)  da ta ,  var iab le  "beans

shou ld  be  se t  to  the  nwber  o f  sepdate  bems in  each

spect rM,  and var j .ab fe  " inputs"  shouLd be  se t  to  the  to ia l

nunber  o i  po j .n ts  in  each spec t run .  Each I (V)  spec t r rm ts

d iv ided in to  "bems"  equa l  da ta  se ts ;  the  ou tpu t  f i l es  a re

n m e d  " b e & . n n n " .

* * ;dmp

dunp Dump netuork  ve igh ts .

The cur ren t  va lues  o f  a l l  ne tvork  ve igh ts  a re  dmped to  the

f i le  vhose nme is  g iven  by  the  env i ronment  var iab le

" d w p J i l e " .

d w  D i s p l a y  a  s 1 n g 1 e  n e t r o r k  u e i g h t .

T h e  c o m a n d  s y n t a x  i s :  d u  v l i l  i  J

v  a s k s  t o  d i s p l a y  u  i n p u t - t o - h i d d e n  v e i g h t

s  asks  to  d isp lay  a  h idd€n to  ou tpu t  we igh t

i , j  a r €  t h e  s € i g h t  i n d i c e s

Env i roment  var iab les  are  se t  us ing  the  "se t "  command:

se t  <varnMe>=<vafu€>

Typ ing  "se t "  D i th  no  argument  d isp lays  the  cur ren t  va fues

of  a I I  env i roment  var iab les .  The ava i lab le  €nv i roment

v a r i a b l e s  a r e :

a d a p t i v e  A d a p t i v e  l e a r n i n g  r a t e  f l a g  ( l = o n ,  0 = o f f )

a n l i n f i l e  A n a l y s i s  i n p u t  f i l e  ( f o r  " a n a l y z e "  c o m a n d )

a n l o u t f i l e  A n a f y s i s  o u t p u t  f i L e  ( f o r  " a n a l y z e "  c o m a n d )

bemout f i le  Be i l  ou tpu t  f i l e  ( fo r  " rebeam"  comand)

bems NMber  o f  bems in  input  ( fo r  "debe i l "  and " rebem")

debug Debug mode on/o f f  l IaE

de l i la lyze  In te rva l  (epochs)  to  save ne tsork  we igh ts

de lp r t  Nmber  o f  epochs  to  p r rn t  msg and save er ro r  repor t

d M p f i l e  N e t w o r k  v e i g h t  d m p  f i l e  n a m e

epochs  Nrmber  o f  apochs  to  t ra in  the  ne twork

e r r o r d a t  E r r o r  v s .  p p o . h  o u r D ) l  t l l e  r r a n , a
a r r ^ r l i q  r ' a ' n i n n  o r i o r  l r m r L

forna t ted  f ro rna t ted  da ta  f iLe  name (LEEDNET fo rna t )

func t ion  Sefec ts  a  fo rna t t ing  func t ion  fo r  " fo rmat "  command

he lp f i le  Hefp  J i le  name

hidden NMber  o f  ne tsork  h idden nodes

inputs  Nmber  o f  ne twork  input  nodes

kappa Kappa par i le te r  fo r  adapt lve  learn ing

m l s s l n g  H l s s l n g  I  s t r u c t u r e  f i l e  n i l e  ( f o r  " s e p a r a t e "  c n d )

mu Monentum parmeter  fo r  learnrng  ra te

n w p t s  N r m b e r  o f  p o r n t s  l n  I ( V )  c u r v e

o r r g l n a l  O r r g i n a l  J a t a  f i l e  n e e  ( f o r  " f o r n a ! "  c o m a n d )

outpu ts  NMber  o f  ne tHork  ou tpu t  nodes

p a u s e  T r a r n i n g  p a u s e  ( e p o c h s )

ph i  Ph j .  par i le te r  fo r  adapt ive  learD ing

p l o t f i f e  P l o t  d a t a  o u t p u t  f i l e  n m e

p r u n e d  P r u n e d  d a t a  f i l c  n m c  ( " p r r l n e " . ^ m a n d )

resweepoch Resue epoch ( fo r  " resme"  comi ld )

seed Seed fo r  redom number  genera tor

seedmul t  Randon seed muLt ip l re r

s e p n u m  N m b e r  o f  s t r u c t r r r e  t o  b e  i s o L a t e d  f o r  " s e p a r a i e "  c n d

s i n g l e  1  s t r u c t u r e  f i l e  n i l e  ( " s e p a r a t e "  a n d  " a s k "  c n d s )

s k l p  N m b e r  o f  p o i n t s  t o  s k r p  f o r  " p r u n e "  c o m n a n d

r r d r " L r t s  r L d L U :  u " / r i ' r  r r d B

s t a t u s f i l e  T r a i n i n g  s t a t u s  f i l e  n m e

st ruc tures  NMber  o f  s t ruc tu res  rn  da ta  se t

L h e t a  T h e l a  p a r m e t e r  t o  . o n l r o l  a v e r a g i n g  p e r i o L

t r a i n i n g  T r a i n i n g  d a t a . f i l e  n a m e

weigh t f i le  F i le  nme under  sh ich  to  save or  load  ne tFork  Ee igh ts

EXi t  QUl t  LEEDNET.

fo rmat  Re fo rna t  da ta  in to  LEEDNET fo rna t .

I ( V )  d a t a  i s  r e  f o r m a t t e d  f r o n  r t s  o r i g i n a l  f o r n a t  i n t o  l h e

fomat  used by  LEEDNET.  Severa l  d i f fe ren t  fo rna t i rng

func t ions  may be  ava i fab le ;  they  are  se lec ted  us ing  the

env i romet r t  var iab le  " func t ioD" ,

o r ig ina l  ->  fo rna t ted

***he1P

he lp  He lp  on  LEEDNET commands.

Type "be fp"  fo r  a  l i s t  o f  ava i lab le  comands.
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T y p e  " h e l p  c n d "  l o r  d e l a i . L e d  b " L p  o n  ' . o m M d  " - m d " .

Type "he lp  env"  to  d isp lay  he fp  on  env i roment  var iab les-

* *  * load

load Load ne tcork  se igh ts .

Net f lo rk  ce igh ts  a re  loaded f ron  the  f iLe  de f ined by

env i roment  var iab le  " {e igh t f i le " .  The nwber  o f  inpu t

nodes,  ou tpDt  nodes ,  ed  s t ruc tDres  (var iab les  " inputs
" o u l p u i s " ,  u d  " s i r u . t u r c s " )  P r  I  I  a l s o  b p  f o a d e d .

m€m Disp lay  nemory  usage repor t .

T y p e  " m e m "  t o  d r s p l a y  L h e  c u r r e n t  n e t u o r k  n e m o r y  u s a g e .

Type "nen < inputs>  <h idden> <outpu ts>"  to  d isp lay  the

menory  tha t  wou ld  be  requ i red  fo r  a  ne tvork  o f  the

s p e c i f i e d  n u m b e r  o f  i n p u t  ,  h i d d e n ,  a n d  o u r p u t  n o d e s

merge l , le rge  severa l  da ta  f i les  together .

The "merge"  comand w i l l  p rompt  fo r  the  nme to  be  g iven

t o  t h e  o u t p u t  f i l e .  I t  { i } 1  t h e n  a s k  f o r  t h e  n m e s  o f

t h e  i n p u t  f i l e s .  e a c h  o f  v h i c h  s h o u l d  c o n t a i n  o n e  s t r u c t D r o

( c r e a t e d ,  f o r  e x m p l e ,  b y  t h e  " s e p a r a t e "  c o m a n d ) -  E n t e r  a

car r iage re tu rn  by  i t se l f  a f te r  the  Las t  f i l e  nme is

en tered ,  l , /hen  done,  nanua l ly  update  l ine  3  o f  the  ou tFr t

f i t e  ( t o t a I  n m b e r  o f  s t r r c t u r e s )  -

* * * p 1 o t

p l o t  G e n e r a t e  I ( V )  p l o t  d a t a .

The f i le  g iveD by  the  env i roment  var iab le  " fo rna t ted"  rs

broken in to  spec t ra  fo r  ind iv idua l  s t ruc tu res ,  and 1  vs .  E

d a t a  i s  s a v e d  i n t o  f i l e s  n m e d  " s t r u c t . n n n " .  T h e  d a t a  r n

e a c h  f i l e  i s  i n  A S C I I  f o r n a t  a n d  i s  s u i t a b l e  f o r  p l o t t ) n g

w i t h  a  s p r e a d s h e e !  p r o g r m -

prune Pr t rne  po in ts  f ron  a  da ta  se t .

T h e  d a t a  f i l e  s p e c i f i e d  b y  t h e  e n v i r o m e n t  v a r i a b l e

" f o r m a t t e d "  i s  " p r u n e d "  b y  k e e p i n g  o n l y  e v e r y  n - t h  p o i n r ,

w h e r e  " n "  i s  g i v e n  b y  t h e  e n v i r o m e n t  v a r i a b l e  " s k i p " .

T h e  r e s u l t  i s  s a v e d  i n  t h e  f i l e  s p e c i f i e d  b y  t h e

env i roment  var iab f  e  r rp rune" .

fomat ted  >  pruned

q u i t  Q u i r  L E E D I E T .

** * rmdomize

r a n d o m i z e  I n l t i a l i z e  r a n d o m  n M b e r  g € n e f a t o r  f r o n  s y s i € n  t , i n e .

r e b e m  C o n b l n e  d a t a  s e t s  f o r  l n d i v r d u a l  s t r u c t u r e s  r n t o  o n e  f i l e

T h e  u s e r  r s  p r o m p ! e . l  l o r  r h o  n m e s  o f  t h e  f r l e s . o n t a i n r n g

the  ind iv idua l  b€m data ,  i ld  the  bean da ta  i s  combi red  jn to  a

s r n g l e  f i l e  v h o s e  n m e  i s  s p e c l f i e d  b y  t h e  " b e a m o u t f i l e '
e n v i r o m e n t  v a r i a b l e -

r e s u m e  R e s u m e  a  t r a i n i n g  r u n .

T o  r e s w e  a  t r a i n i n g  r u n ,  t y p e :

s e t  c e i g h t f  i l e = < s e i g h t  f  i L e n a m e >

set  resuneepoch=<epoch nunber>

r e s m e

save Save ne tvork  Ee igh ts .

Network  ce igh ts  a re  saved to  the  f i le  de f ined by

env i roMent  var iab le  " le igh t f i le " .  The nMber  o f  lnpu !

n o d e s ,  o u t p u t  n o d e s ,  m d  s t r u c t D r e s  ( v a r i a b L e s  " i n p u t s " ,

" o u t p u t s " ,  M d  " s t r u c t u r e s " )  s i l l  a l s o  b e  s a v e d .

s c a l e  D i s p l a y  o r  s e t  n e t v o r k  o u t p u t  s c a l i n g  c o n s t m t s -

T y p e  " s c a l e "  u t t h  n o  a r g x m e n i s  L o  d l s p l a y  t h e . r r r r p i l t

v a l u e s  o f  a l l  s c a l i n g  c o n s t a n t s .

Type "sca1e <n> < tn in>  < tmax> [<smln> <snax>]  [n ] "

to  ca lcu la te  and save scaL ing  cons t i l t s  fo r  ou tpu t  <n>

for  " t rue"  va lues  rmg ing  be t leen < tmin> and < tmax>,

The op t iona l  D in rnun &d max imm sca led  va lues  <smin>

i l d  < s n a x >  d e f a u l t  t o  0 . 1  e d  0 . 9 ,  r e s p e c t i v e f y .  I f

i l  u n "  i s  s p e c l f i e d ,  t h e  s c a l i D g  i s  c a l c u f a t e d  b u t  n o t

s t o r e d .

Type "sca le  <n> <va lue>r r  to  per fo rm ! rue  >scafed  ad

sca led  > t rue  convers ions  o f  <vaLue> fo r  ou tpu t  <n>.

separa te  separa te  da ta  in  a  da ta  se t -

A  s ing le  s t ruc tu re  i s  i so la ted  f rom the  da ta  se t  spec i f ied

by  the  env i roment  var iab le  " fo rna t ted" .  The env i roment

var iab le  "sepnun"  shou ld  be  se t  to  the  number  (s ta r t ing

f r o n  0 )  o f  t h e  s t r u c t u r e  t o  b e  i s o l a t e d .  T h e  " s e p a r a t e _
comi ld  E i l l  then  p face  the  spec t rm fo r  tha t  s t ruc tu re
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i n to  the  f i le  t rhose nme is  g iven  by  the  "s ing le"  var iab f€ ,

i ld  the  rena in ing  spec t ra  w i l l  be  p laced in to  the  f i le

chose nme is  8 j .ven  by  the  "miss ing"  var iab le .

f o m a t t e d  >  m i s s i n g ,  s i n g l e

S F '  / d i  s n l : v  F n v i r o n m e n t  v a r i a b L e s ,

Type "se t "  r i th  no  argments  to  d isp lay  the  cur ren t  va lues

of  a l l  env i roment  var iab les .

Type "se t  <varnme>=<va1ue>"  to  se t  an  env i roment  var iab fe

to  a  ne !  vaLue.

s ta tus  Shos ne t to rk  t ra in ing  s ta tus .

The ne t to rk  t ra in ing  s ta tus  is  pero id icaL ly  s to red  in  the

f i f €  d € f i n e d  b y  t h e  e n v i r o M e n t  v a r i a b f e  " s t a t u s f i 1 e " ,
n r . v r d c d  t h e  i l s t a t r s "  v A r i a b l e  i s  s e t  t o  1 .  T h e  " s t a t u s

c o m i l d  d i s p L a y s  t h e  c o n t e n t s  o f  t h i s  f i l e .

t r a i n  T r a r  n  I  h F  n e t i l o l  k

T h e  I r l e  s p e c i f i e d  t , y  t h e  " t r a i n i n g "  e n v i r o m c n t  v a r i a b l o

i s  u s e d  t o  t r a i n  t h e  n e t w o r k  f o r  " e p o c h s "  t r a i n j . n g  e p o c h s -

Type " t ra in  Icon t ] "  to  cont inue t ra in ing  tha t  has  been

s t o P P e o .

ver  D isp lay  LEEDNET vers ion  nmber .
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I-V cvves,9

inner potential, 20,21

energy shift, 95

input nodes, 46

instrument response function, 16, 88

intensity, 94

interatomic scattering. 20

ion channels

gated, 44

transmitter-gated, 44

voltage-gated, 44

kinernatic calculation. I 9

layer doubling,29

learning rate, 58

LEED, see low-energy electron diffiac-

tion

LEEDNET, 64

low-energy electron dittraction, 2, 6-l'/

mating pool, 37

medial nodes, 48

mitochondrta,42

momentum, 59

muffin-tin

constant, 2 |

potential, 20

radius,  2 l

mr-rltiple scerttering, ll, l9

rnutation, 38

neuron ,4 l

neurotransmitter ' ,  44

nodes, 46

inpr,rt, 46

Pendry

R-factor ,  31.  36,  39,  103

RR-factor, 32

Y-1 ' r - rnct ion,  31,  103,  109,  l12,  122

phase shift, 24

phonon, 22

plasma membrane. 42

plasmon, 22

R-factor, see reliability llctor

registry, 33

lelaxation, 3

ref iab i l i ty  fhctor ,  30,32,36,  39,  103

renormalized forward scattering, 29, 88

reproduction, 37
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RFS, see renormalized forward scatterins

RHEED, 6

sample preparation, l7

scaling, -50, I l3

scattering

interatomic, 26

intra-atomic, 20, 24

selvedge,3

sigmoid function, 50

simulated annealing, 35

sputtering, l7

steepest descent, 33

suppressor grid, 14,22

surface physics, I

synapse, 44

synaptic cleft,  45

synaptic vesicles, 44

terminal branches, 42

thermal effects, I I

training, 47

transfer function, l6

UHV see ultra-high vercuum

ultra-high vacuum, 2, l2

unsupervised learning, 47

weig l r t ,  46,49

x  rays ,  6 ,9 ,  19
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