APPROVAL SHEET

Title of Dissertation: Analysis of Low-Energy Electron
Diffraction IV Spectra Using Artificial
Neural Networks

Name of Candidate: David Grant Simpson
Doctor of Philosophy, 1999

H 4
A5 4

Dissertation and Abstract Approved: , ‘/ Y Al
Dr. Philip Rous
Associate Professor of Physics
Department of Physics

+h .
Date Approved: 7 &C{O ber /99 C]

Name:

Permanent Address:

Degree and date to be conferred:

Date of Birth:
Place of Birth:

Secondary Education:

Collegiate institutions attended:

David Grant Simpson.

140 Woodridge Place,
Laurel, Maryland 20724-1802.

Ph.D., 1999.

January 17, 1961.

Charleston, West Virginia.
South Charleston High School,

South Charleston, West Virginia.
Graduation date: June 7, 1979.

1994-1999 University of Maryland, Baltimore County,
Baltimore, Maryland.
Ph.D., Applied Physics, 1999.

1990-1993 Johns Hopkins University,
Baltimore, Maryland.
M.S., Applied Mathematics, 1993.

1984-1990 Johns Hopkins University,
Baltimore, Maryland.
M.S., Applied Physics, 1990.

1979-1984 Virginia Polytechnic Institute and State University,
Blacksburg, Virginia.
B.S., Physics, 1984 (minor in mathematics).

Major: Applied Physics.

Professional publications:

“An Alternative Lunar Ephemeris Model for On-Board Flight Software Use,”
Proceedings of the 1999 NASA Goddard Flight Mechanics Symposium,
NASA Goddard Space Flight Center, Greenbelt, Maryland.

“Spacecraft Attitude Determination Using the Earth’s Magnetic Field,”
Proceedings of the 1989 NASA Goddard Flight Mechanics / Estimation
Theory Symposium, NASA Goddard Space Flight Center, Greenbelt,

Maryland.

Professional positions held:

1991~

1991-1994

1985-1991

1980-1985

NASA Goddard Space Flight Center, Greenbelt, Maryland.

Flight Software Senior Designer.

Currently the project manager for the Hubble Space Telescope’s
DF-224 on-board attitude control computer flight software project.

Prince George's Community College, Largo, Maryland.
Adjunct Associate Professor of Physics.

Taught sophomore-level calculus-based physics to science
and engineering majors.

OAOQ Corporation, Greenbelt, Marviand.

Flight Software Technical Manager.

Developed and led flight software efforts for the
on-board computers of NASA's International Ultraviolet
Explorer, Solar Maximum Mission, and Extreme
Ultraviolet Explorer spacecraft.

COMSAT Laboratories, Clarksburg, Maryland.
Member of Technical Staff.

Performed testing and computer analysis of satellite
power systems for several communications satellites.

ABSTRACT

Title of Dissertation: Analysis of Low-Energy Electron Diffraction 7-V Spectra
Using Artificial Neural Networks

David Grant Simpson, Doctor of Philosophy, 1999

Dissertation directed by: Dr. Philip Rous, Associate Professor of Physics

Low-energy electron diffraction (LEED) has proven to be a very successful method for
determining the structure of surfaces. However, the calculations involve the use of a
global search algorithm, which can require substantial amounts of computer time. This
Dissertation investigates the use of artificial neural networks as a method for increasing
the efficiency of this search. Using the NisqPdso(100) surface as an example, it is shown
that once a neural network is trained on -V curves produced by a LEED full dynam-
ical calculation, it can successfully recognize the surface structure parameters from an

experimental /-V curve.

ANALYSIS OF LOW-ENERGY ELECTRON DIFFRACTION /-V SPECTRA

USING ARTIFICIAL NEURAL NETWORKS

by

David Grant Simpson, M.S.

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1999

Preface

AS we approach the dawn of the twenty-first century, it is natural to pause and reflect
on the scientific advancements that have transformed the world during the past hundred
years, and to wonder about what the coming century will bring. One hundred years ago,
many physicists assumed that our understanding of Nature was essentially complete, and
that twentieth-century physics would consist largely of performing experiments which
would yield measurements with increasing degrees of precision.

This view did not hold for long. Einstein’s publication of the theories of special rel-
ativity in 1905 and general relativity in 1916 were followed shortly by the development
of the quantum theory in the 1920s. These theories have revolutionized our understand-
ing of Nature, and have given birth to whole new branches of physics which are still
being explored today. Our understanding of these new fields has resulted in astonishing
technological advancements which have changed the lives of people everywhere. These
technological advancements have, in turn, made possible the experimental and compu-
tational techniques that have allowed us to advance our understanding of Nature even
further.

The development of the quantum theory has made possible our modern understanding

of the theory of solids. A sub-field of solid-state physics, surfuce physics, is concerned

with the ways in which the atomic composition and structure of a solid is changed in the
vicinity of a surface (that is, at its interface with a surrounding vacuum or gas). This study
is important for a thorough understanding of many processes of great practical importance,
such as corrosion, semiconductor physics, and catalysis.

Experimental surface physics is based upon techniques that are sensitive to the struc-
ture and composition of the atoms of the solid near the surface, while being relatively
insensitive to the atoms in the bulk of the material. The atoms of interest are those in
the top few (usually around three) atomic layers near the vacuum interface, since it is
generally found that those are the layers whose structure differs appreciably from that of
the bulk solid.

Since the earliest days of surface physics, one of the most fundamental and useful of
these experimental techniques has been low-energy electron diffraction, or LEED. LEED
is an experimental technique used for surtace crystallography in which one illuminates a
solid surface with Jow-energy electrons and observes the resulting diffraction pattern. The
resulting data allows one to determine the atomic positions of the surface layers, typically
to within about 0.1 angstrom.

Only in the past few decades have advances in vacuum technology made it possible to
keep surfaces clean for enough time to allow LEED techniques to investigate their surface
properties. Technological advancements over these same decades have seen the develop-
ment of digital computers of increasing speed and power, which have made possible the
theoretical calculations with which to properly interpret LEED experimental data for an
accurate understanding of the structure and composition of crystalline surfaces.

This Dissertation 1s a description of a new development in this field: the application of

artificial neural networks to the interpretation of LEED experimental data. We begin with

i

a overview of the physics of surfaces and LEED experimental techniques in Chapter 1.
Chapter 2 gives a brief description of the theoretical calculations used to predict the
outcome of a LEED experiment. These calculations are used to create a database that
is used by the computational technique described in Chapter 3, that of artificial neural
networks. Chapter 4 gives a description of the research with which these techniques were
developed, and Chapters 5 and 6 describe the results of the research and the applicability

of the artificial neural network techniques to the analysis of experimental LEED data.

v

Dedication

For my family and friends, without whose constant encouragement this work would not
have been possible; and for Hazel Childress, my high school math teacher, who taught

me to appreciate the beauty of mathematics.

Acknowledgement

The author wishes to express his deepest thanks and appreciation for the guidance and

support of Dr. Philip Rous for his guidance and advice in preparing this work.

vi

Contents

Preface
Acknowledgements

1 Surface Physics and Low-Energy Electron Diffraction
1.1 Physics of Surfaceso L
1.2 Low-Energy Electron Diffraction,
1.2.1 Multiple Scattering L Lo
1.2.2 Thermal Effects oL
1.3 Experimental Apparatus
1.3.1 Instrument Response Function

1.3.2 Preparation of Sampleso oo

2 LEED Dynamical Calculations and Structure Analysis
2.1 LEED Dynamical Calculations

2.1.1 The Inner Potential

o

1.2 Inelastic Processes

12
(9

Intra-atomic Scattering oL

Vil

e
11

vi

11
t1
12
16
17

2.1.4 Interatomic Scattering 26

2.2 LEED Structure Analysis 29
2.2.1 Reliability Factors 30

2.2.2 Exhaustive Global Searcho 00000 32

2.2.3 Steepest Descent Method 33
2.2.4 Simulated Annealing 35

2.2.5 Genetic Algorithms oL 36

3 Artificial Neural Networks 40
3.1 Introduction 40
3.2 Biological Neural Networks 41
3.3 Artificial Neural Networks L 45
3.3.1 Examples of Artificial Neural Networks 47

3.4 Backpropagation Networks L. 48
3.5 Scaling 50
3.6 Learning 52
3.6.1 Error Derivatives for Hidden-to-Output Weights 53

3.6.2 Error Derivatives for Input-to-Hidden Weights 55

3.7 Learning Algorithms 57
3.7.1 Constant Learning Rate 58

372 Momentum 59

3.7.3 Adaptive Learning Rates 59

3.8 Weight Initialization 61
39 Batch Learning Lo 61

viii

4 Development of Artificial Neural Networks for LEED Surface Structure De-

termination 63
4.1 Network Program Design oL 64
4.2 Initial Testing L e 65
4.2.1 Adjustment of Network Parameters 68
4.3 Training with Calculated /-V Data. 74
4.4 Tests of Data Set Reduction 80
4.4.1 Reduction of Number of Training Structures 80
4.4.2 Reduction of Number of Points Per Training Structure 83
4.5 Conclusions Lo 85

5 Application of Artificial Neural Networks to Low-Energy Electron Diffrac-

tion 86
5.1 Introduction 86
5.2 Description of Experimental Sample 87
5.3 Theoretical Calculations Lo 88
5.4 Initial Results L 89
5.5 Correction for Interlayer Spacings 97
5.6 Test with Wider Training Range and Fewer Examples 99
5.7 The Pendry Y-function L. 103
5.8 Inner Potential Energy Shift o000, 106
5.9 Testing With the Y-function, 106

6 LEED Surface Structure Determination Using Artificial Neural Networks 108

6.1 Determination of Interlayer Spacings 109

1X

6.2 Determination of Compositions Over the Full Training Range

6.3 Simultaneous Determination of Compositions and Interlayer Spacings . . .

6.3.1 Calculated Data.o
6.3.2 Experimental Data (Restricted Range)
6.3.3 Experimental Data (Full Range)
6.4 Further Improvements
6.5 Energy Shift
6.6 Transferability
6.7 DISCUSSION v o e e
6.8 Concluding Remarks L
6.8.1 Future Directions
6.8.2 Summary

A LEEDNET User’s Guide
A.1 Running LEEDNET
A.2 Environment Variables oo
A.3 File LEEDNET.INI e
A4 Formattingthe Data. oo
A.5 Training the Network
A.6 Using the Trained Network
A.7 Command Reference

A.8 Environment Variable Reference

B Listing of Program LEEDNET.C

C Listing of Program FORMATO1.C 178

D Listing of File LEEDNET.H 183

E Listing of File LEEDNET.HLP 184

X1

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

Genetic algorithm results for maximizing y = f(x) (initial population). . . 37
Genetic algorithm results for maximizing y = f(x) (second generation). . 38
Network recognition of y =sinkzx fork=1,2.. 65
Network recognition of y = Asinz for A=1,2. 66
Network recognition of y =sinkx for k= 1,23, 4,5 67
Network recognition of y = Asinzx for A=1,23.. 68
Network recognition of y =sinkx for A=1,2,3and £ =1,2,3,4,5. . . 69
Network recognition of y = 3 sin 2z with different numbers of hidden nodes. 73

Network recognition of Ni;oPdso(100) I-V curves for six different top
layer compositions. oL 76
Network recognition of NisgPdso(100) -V curves for six different top
layer compositions, having trained on five.o 78
Network recognition of NisgPdso(100) I-V curves for six different second

layer compositions.o Lo 78

Network recognition of NisoPdso(100) /-V curves for six different second

layer compositions, having trained on five. 79

Xil

4.11

4.12

4.13

4.14

5.1
5.2

5.3

54

6.1
6.2

6.3

6.4

6.5

6.6

Network recognition of Ni;oPd;g(100) -V curves for 180 combinations

of compositions in the top three atomic layers. 80
Network test results after training on 15 selected structures. 81
Network test results after training on every 17th structure. 83
Network test results for reducing number of points in training sets. 84
Network test results for network shown experimental /-V data. 97

Network test results for network shown experimental /-1 data, corrected
for interlayer spacings. 98
Network test results for network shown experimental /-V data, using re-
duced training set. 100

Network test results for network shown Y -function of experimental /-V data. 107

Network test results tor determination of interlayer spacings. 110
Network test results for determination of atomic layer compositions (full
range of training data). 111
Network test results for simultaneous determination of compositions and
interlayer spacings, with network shown calculated data. 112
Network test results for simultaneous determination of compositions and
interlayer spacings (restricted range of training data). 114
Initial network test results for simultaneous determination of compositions
and interlayer spacings (full range of training data). 115
Improved network test results for simultaneous determination of compo-

sitions and interlayer spacings with ¢ = 0.85 (full range of training data). 116

X1l

6.7

6.8
6.9

Network test results for determination of atomic compositions, comparing

two methods for ensuring network convergence. 122
Network test results for a variety of inner potential energy shifts. 123

Network test results for simultaneous determination of compositions and

interlayer spacings for CusgPdso(100).o 124

X1v

List of Figures

1.1
1.2
1.3
1.4

2.1

3.1
3.2
3.3
34
3.5

4.1
4.2

43

5.1

Surface relaxation and reconstruction. 4
Surface relaxation. 5
Universal curve of electron mean free path vs. incident electron energy. . . 8
Schematic diagram of a simple LEED apparatus. 13
Typical LEED [-Vcurve. 15
Muffin-tin potential, for two spatial two dimensions. 21
Schematic figure of a typical vertebrate neuron. 42
Details of nerve cell body. 43
Encoding of letters for character recognition. 48
An artificial neural network.o 0oL 49
Activation function f(z) =1/(1+e™). 51
Network error vs. training epoch, with and without adaptive learning rate. 71

Network error vs. training epoch, with and without momentum term. . . . 72
Input of /-V data to a backpropagation network. 75
Bulk termination of Ni;yPdsy in the (100) plane. 90

XV

53
54
5.5
5.6

5.7

6.1

Experimental and theoretical /-1 spectra for NisgPdso(100). 91
Theoretical I-V spectra for NizoPd:o(100) for several top-layer compositions. 92
Theoretical I-V spectra for NisoPds(100) for several interlayer spacings. . 93
Network training error for NisgPds;o(100) vs. number of training epochs. . 101
Network independent test error for Ni5oPds0(100) vs. number of training

epochs. 102

Theoretical I-V curves for NisoPd;o(100) (with “swapped” layer spacings). 118

XV1

Chapter 1

Surface Physics and Low-Energy
Electron Diffraction

“Natura inest in mentibus nostris insatiabilis quaedam cupiditas veri videndi.”

—— Cicero, Tusculanae Disputationes, 1, il, 44

ONE of the newest branches of solid-state physics is surface physics, the study of
the physical processes that occur at the surface of a solid—that is to say, in the few atomic
layers near its interface with a surrounding gas or vacuum. The study of the physics at solid
surfaces is of great importance for understanding many processes of practical interest. For
example, corrosion and catalysis involve chemical processes that take place on a material
surface, as does much of the interesting physics that takes place in semiconductor devices
(for example. at the junction between p-type and n-type semiconductors, or between a
metal oxide and a semiconductor in MOSFETs and similar devices [1]).

A greater understanding of the physics and chemistry that takes place at surfaces may

yield many practical benefits. For example, it may result in ways to prevent unwanted

corrosion or the development of new materials and devices with many interesting and
useful properties.

Surface physics is an emerging discipline that is still very much in its infancy. Only in
recent years has experimental and computational technology advanced to a point that has
allowed physicists to investigate in detail the ways in which atoms arrange themselves in
the vicinity of a material surface and the chemical processes that take place on a surface.
At the moment, most studies are confined to investigations of fairly simple surfaces—
usually crystalline metals or semiconductors whose surfaces have been thoroughly cleaned.
Typically these surfaces are studied in an ultra-high vacuum (UHV) environment to pre-
vent complicating contaminations from distorting the data. Only in coming years, after
we have gained a thorough understanding of the physics of clean crystalline surfaces,
will we be able to begin investigating more complicated systems, such as highly con-
taminated surfaces at atmospheric pressure or the physics at the surfaces of amorphous
solids. Such advances will undoubtedly depend on further developments in experimental
and computational technology.

In this Dissertation I will review the experimental, theoretical, and computational
background behind one of the most important experimental techniques of the surface
physicist: low-energy electron diffraction, or LEED. This will be followed by a description
of my recent research in the use of computer artificial intelligence in helping to solve a
difficult computational problem in LEED: that of extracting information about the surface

structure and composition from LEED diffraction patterns.

1.1 Physics of Surfaces

When a solid material is cut, the atoms in the vicinity of the newly-formed surface will
generally rearrange themselves into a pattern that differs from that of the bulk material.
This is because atoms near the surface of a material lack coordination compared to atoms
deep in the bulk, causing the surface atoms rearrange themselves into a minimum-energy
configuration that differs from that of the bulk.

Experimental studies have shown that, in metals, the presence of a surface interface
generally results in a relaxation of the surface, in which the spacings between atomic
layers parallel to the surface are changed relative to the bulk, while the crystal structure
remains essentially unchanged [1, 2]. The region over which this relaxation takes place,
called the selvedge, generally extends to just a few atomic layers into the bulk of the
crystal (Fig. 1.1).

Relaxation of the top layer of surface atoms tends towards the bulk so that the inter-
atomic layer spacing at the selvedge is contracted relative to the bulk. The change in the
layer spacings deeper in the crystal is often oscillatory; this may be understood by referring
to Fig. 1.2. The figure shows Wigner-Seitz cells drawn around each of the core atoms in
the surface, where each cell represents a portion of the mobile conduction electrons sur-
rounding that atom. At the surface, the conduction electrons will redistribute themselves
into the smooth, lower-energy configuration shown. This net shifting of electrons toward
the interior of the material will also shift the ion cores’ electrostatic equilibrium position
in the same direction, resulting in a net shift of the ion cores into the bulk and a general
contraction of the atomic layers near the surface.

The experimental study of the behavior of the atoms near the solid surface is hampered

Ssivedge i

t

()

Figure 1.1: Surface relaxation and reconstruction.
(a) Atomic arrangement of bulk solid. (b) Relaxation of surface atoms. (c) Reconstruction
of surface atoms. (From Prutton, 1994 [1].)

Figure 1.2: Surface relaxation.
(From Finnis and Heine, 1974 [3].)

by the presence of contaminating atoms which are easily adsorbed onto the surface. In
order to simplify the study of the surface atoms, it is necessary to observe the surface
in an ultra-high vacuum, where the density of contaminating atoms is sufficiently low
to allow the pure surface to be studied at length without significant interference from
contaminants. Only in recent years have advances in vacuum technology made it possible
to create vacuums of sufficiently low pressure (~ 107'Y torr) to allow crystalline surfaces
to be studied before they become excessively contaminated by atoms from the surrounding

gases.

1.2 Low-Energy Electron Diffraction

Many experimental methods have been devised for studying the atoms at a crystalline
surface. Each method is required to be surface sensitive in some way, so that it returns
information about the surface atoms while ignoring the atoms in the bulk material. One
may, for example, bombard a surface with high-energy electrons or x rays at grazing
incidence so that they never enter the bulk, as is done in reflection high-energy electron
diffraction (RHEED) and grazing-incidence x-ray diffraction.

One of the most important surface-sensitive experimental methods of the surface physi-
cist is low-energy electron diffraction, or LEED. LEED has its origins in the famous 1927
experiment of Davisson and Germer [4], in which a crystal of nickel was bombarded by
a beam of low-energy (54 eV) electrons. Measurement of the scattering angle of the scat-
tered electrons allowed Davisson and Germer to make the first experimental measurement
of the electron wavelength—a vivid experimental confirmation of the wavelike nature of

the electron, for which Davisson and Thomson were awarded the 1937 Nobel prize in

physics.

The surface sensitivity of low-energy electrons is best illustrated with the so-called
“universal curve,” shown in Fig. 1.3. The universal curve shows the electron mean free
path versus incident electron kinetic energy and shows two competing effects. The first
effect is a general decrease in the electron mean free path through the material with
increasing electron energy. This is caused by greater availability of energy levels for
inelastic scattering in the material as the electron energy is increased. The second effect
shown in the universal curve is a general increase in the electron mean free path through
the material with increasing electron energy. This is just an artifact of the electron’s
greater velocity at higher energy, which allows it to travel farther before being inelastically
scattered.

As shown in the figure, the first of these effects dominates at lower energies, while
the second dominates at higher energies. Around 50-100 eV, the two effects “balance,”
producing a broad minimum in the mean free path around these energies. By a happy
coincidence, this minimum occurs at electron energies for which the de Broglie wave-
length is short enough to return useful information on the surface structure. By another
coincidence, the magnitude of this minimum has a mean free path of a few angstroms,
just the right magnitude to be sensitive to the first few atomic layers of the material.

In modern LEED experiments, a crystalline surface is illuminated with a beam of
low-energy (< 1000 eV) electrons to produce a diffraction pattern. The positions of the
diffraction spots give an indication of the symmetry of the crystal lattice. Because LEED
is a surface-sensitive technique, however, the positions of the diffraction spots really only
give an indication of the positions of the atoms in the top atomic layer, and perhaps the

ositions of adsorped atoms. In order to determine the type of crystal lattice in the bulk
p yp y

T 17 T 1TT1 l] 1 T T T TTTT] T T 1T T T TTT} i
100 |— Av @ Au >
o \ .
S]
—~ 50 I~ Al® Au TheOry -
's — Au.‘Al \ / -
£ \ |
a. Aee \ Aue M.o i
ﬁ B Age oAu Ce
- osi Sew
Ave \ o~
§ \ Age ®Au ;e
- Se SAg Beq® Ge @ Ag~]
Z 10 . {3]
o AN 1 o8 oAg 3
o NV NS o 5 oMo —<
r: ®Fc /.M g
d O Al]
3 L y 4oyt y 1oyl)
2 5 10 50 100 500 1000 2000

Electron energy (¢V)

Figure 1.3: Universal curve of electron mean free path vs. incident electron energy.
(From Zangwill, 1988 [2].)

material, a bulk-sensitive technique such as x-ray diffraction must be used [5].

Besides examining the positions of the diffracted beams, additional information may be
extracted from the experiment by observing changes in the intensity of the diffraction spots
as the sample is rotated or the energy of the incident electrons is changed. Specifically,
the following types of data may be collected [6]:

I-V curves. These are plots of the diffracted electron beam intensities 7 as a function
of the incident electron energy (or, equivalently, the potential V through which the incident
electrons are accelerated). In this way, the changes in the diffracted electron intensity may
be observed as the incident electron wavelength is changed. Care must be taken to ensure
that the incident electron energies are low enough that they will be sensitive to scattering
by atoms near the surface, rather than the bulk. The incident electron energies must also
be high enough so that the incident electron wavelength is not longer than the scale of
the atomic distances being studied.

I-V curves are by far the most common type of data collected in LEED experiments,
and will be the data set used for the research with artificial neural networks to be discussed
later. The data is collected for a particular diffracted electron beam, for fixed incidence
angles 0 (polar angle) and ¢ (azimuthal angle).

I-0 curves. In this type of data, one measures the diffracted electron intensity for a
particular diffracted beam, varying the polar incidence angle # and keeping the azimuthal
angle ¢ and incident electron energy fixed. This is the type data collected by Davisson
and Germer in their 1927 experiment to measure the wavelength of the electron.

I-¢ curves. These are produced by measuring the diffracted electron intensity for a
particular diffracted beam while varying the azimuthal incidence angle . The polar

incidence angle @ and electron energy are held constant.

10

For any of these types of curves, the data is generally collected for each of several
different diffraction beams. The data for beams with symmetrically equivalent Miller
indices (such as (10), (10), (01), and (01)) are generally averaged to yield the final
data set. Also, the units in which the intensities are measured are not easily related to
theoretical calculations, so intensity units are taken be arbitrary and are usually normalized
in some way. One may, for example, arbitrarily set the maximum intensity in a data set
to be unity, and scale all other intensities accordingly.

It is believed that there is roughly an equivalent amount of information about the
surface structure contained in each of these three types of data sets [6]. In the case of [-0
and I-¢ curves, the information content is constrained by how much the incidence angles
can be varied (0 < ¢ < 90°, 0 < ¢ < 180°). For I-V data, there is a practical constraint
on the range of incident electron energies, which also constrains the information content:
the electron wavelength must be short enough to contain information about the distance
scales being gtudied, and long enough to be surface-sensitive. The low-energy electrons
used cannot be of arbitrarily low energy; the electron de Broglie wavelength must be less
that the interatomic distances being studied (~ 2 A) in order for the method to return any
useful information on the surface structure. This places a lower energy limit on LEED

electrons of about

h?

VRS ‘
21, \?

~40 eV (1.1)

where h is Planck’s constant, m, is the electron mass, and A is the electron de Broglie

wavelength.

11

1.2.1 Multiple Scattering

The surface atoms of a material have a large scattering cross-section (comparable with
the physical cross-section) with respect to incident low-energy electrons. This means that
the scattering probability for low-energy electrons in a close-packed solid is very high,
and it is this property that makes LEED surface-sensitive. This same property also adds a
complication to the analysis of LEED data: electrons entering the material will generally
be scattered multiple times on their way out of the material. This multiple scattering
is fairly difficult to deal with computationally, and only in recent years has computer
technology advanced to a point that has allowed accurate LEED predictions to be made
which adequately allow for it.

Chapter 2 reviews several methods which are used to perform the so-called LEED

dynamical calculations which allow for this multiple scattering of electrons.

1.2.2 Thermal Effects

The behavior of the diffracted electron beams will generally depend upon the temperature
of the sample, since increasing temperatures cause the atoms in the crystal to vibrate with
increasing amplitude and frequency about their equilibrium positions. The three most
important effects that are observed when the temperature of a sample is increased are a
broadening of the diffraction spots, a general decrease in the intensity of the spots, and
an increase in the intensity of the background illumination (between the spots) [6].

The broadening of the diffraction spots can be attributed to momentum transfer between
the electrons and the crystal lattice via phonon excitation. The decrease in spot intensity

with increasing temperature is due to interference effects: as the temperature is increased,

12

the atoms in the sample vibrate about their equilibrium positions, partially disrupting the

periodicity of the crystal lattice. This decrease in intensity may described by [7]
I =1 cxp(—%<u2>G2) , (1.2)

where I is the diffracted electron intensity, [, is the intensity that would be observed if
the electrons were scattered from a rigid lattice, and (1%) is the mean squared amplitude
of vibration in the direction of G, the reciprocal lattice vector associated with the electron
beam. The exponential factor in Eq. (1.2) is called the Debye- Waller factor, and is often
written as cxp(—2M).

The third thermal effect, the increase in background intensity with Increasing tem-
perature, is essentially due to the decrease in spot intensity. The electrons that would
otherwise have been scattered into the beams are instead scattered into the background
when they no longer satisfy the Bragg scattering conditions due to thermal vibrations of

the crystal lattice.

1.3 Experimental Apparatus

A simplified version of the apparatus used in a typical LEED experiment is shown
schematically in Fig. 1.4. The entire apparatus is contained within an ultra-high vac-
uum (UHV) chamber, which maintains a vacuum of 107!° torr or better. The ultra-high
vacuum is necessary to reduce the rate of accumulation of contaminants on the surface,
so that the surface can be kept relatively clean during the experiment.

A beam of electrons is emitted by a heated tungsten filament inside the electron gun.

Other components of the electron gun serve to accelerate, collimate, and focus the emitted

13

Window

S F

Vacuum

SN

<
RN

=

External
detector

= Y

~NONN
SN

~
ARSI

Figure 1.4: Schematic diagram of a simple LEED apparatus.
(From Zangwill, 1988 [2].)

14

electrons in the direction of the sample, which is mounted on a movable stage that can
be rotated to hold the sample at any desired angle with respect to the incident electron
beam. The emitted electron beam typically has a current of ~ 10" A, corresponding to
about 10" electrons per second. The beam typically has a diameter of less than 1 mm.

Electrons scattered by the sample are reflected back toward grid GG, which is held at
the same potential as the sample (earth ground) to provide field-free region through which
the electrons can travel before reaching the grids. This field-free region is necessary in
order to avoid unwanted deflection of the scattered electrons. Grid G, called a SUppressor
grid, 1s held at a negative potential designed to reject inelastically scattered electrons so
that only elastically scattered electrons pass through to a fluorescent screen S. Screen S is
held at a large positive potential that serves to accelerate electrons toward the screen; the
extra kinetic energy helps to excite the phosphors in the screen so that the electron impacts
are more visible. The fluorescent screen may be viewed through a window in the vacuum
chamber. More modern LEED systems may include a charge-coupled devide (CCD)
camera in place of the phosphorescent screen for more accurate intensity measurements.

Other grids may be present, in addition to those shown in the figure. For example,
there may be two suppressor grids that allow a range of electron energies to pass through to
the screen. There may also be an additional grounded grid placed between the suppressor
grids and the fluorescent screen to help prevent the large electric field from the fluorescent
screen from affecting the suppressor grids. Helmholtz coils may also be present to cancel
the geomagnetic field present in the laboratory.

Figure (1.5) 1s a typical LEED /-V curve, which shows the intensity of a LEED
diffraction spot as a function of incident electron energy. There will be one such curve for

each diffraction spot, with symmetrically equivalent beams being theoretically identical.

Ni(100) (0,0) beam L5
§=0° T =300K
2% P

> . . I Do

-— k > R

= inematic X ~

[oy ol

2 exact

£

QL

Z %}

o

[

el

O : 50 100 150 200

Energy[eV]

Figure 1.5: Typical LEED -V curve.
The curve labeled “exact” is the product of a full dynamical LEED calculation for Ni(100).
The curve label “kinematic” does not include the multiple scattering effects included in
the dynamical calculation. Note the shift in peak positions and appearance of additional
peaks in the dynamical calculation. (After Van Hove, Weinberg, and Chan, 1986 [6].)

These curves contain information about the surface structure, since changes in the structure
produce changes in the shape of the curves. It is the goal of LEED surface structure
analysis to extract information about the surface from these curves.

To extract surface structure information from a LEED /-V curve, one generally cal-
culates theoretical -V curves for a number of plausible surface structures, then com-
pares each of these with the experimental curve to determine which theoretical curve best
matches the experimental data. One then assumes that this best match represents the actual

surface structure. It is this comparison between the LEED theoretical and experimental

I-V curves that is the focus of this Dissertation.

16

1.3.1 Instrument Response Function

In any real laboratory measurement of LEED diffraction data, the observed data will differ
from their theoretical ideal because of imperfections in the crystal lattice and instrument
distortion. The effect of instrument distortion can be modeled using an instrument re-
sponse function which corrects for such effects as the energy spread in the incident electron
beam and the finite aperture width of the instrument.

Let I(s) be the intensity of the diffracted electron beam measured by an ideal instru-
ment, and let J(s) be the beam intensity measured by a real instrument. Here s represents

the momentum transfer from the incident to the diffracted electron beam,
5 = k('ut, - k() ’ (13)

where ky, is the wave vector of the incident electron beam and k.., 18 wave vector of the
diffracted electron beam. Both /(s) and .J(s) are assumed to be beam intensities measured
by diffraction from a perfect crystal lattice, so that they differ only by the inclusion of
instrument distortion in J/(s). Then from linear system theory, the intensity ./(s) measured

by the real instrument may be written as the convolution [8, 9, 10]
J(s) = F{t(r)} = I(s) , (1.4)

where t(r) is the transfer function linking I and J, r is a displacement vector connecting a
pair of lattice points, and F’ denotes the Fourier transform of ¢(r). The Fourier transform
of the transfer function is known as the instrument response function
o0)
T(s) = F{t(r)} = / tr)e™ds . (1.5)
Eq. (1.4) may then be written

J(s)=T(s) = I(s) . (1.6)

17

The instrument response function may be written as the convolution product of several

individual response functions, each of which describes a particular contribution:
T(S) - T(‘S(S) * ﬂlw(s) * CFse(s) * ﬂ)d(s) . (17)

Here T¢,(s) is the contribution due to the energy spread in the incident beam, T}, (s) is due
to the finite aperature width of the detector, 7.(s) is due to the finite source extent, and
Tha(s) is due to the finite beam diameter. Each of these contributions to the instrument
response function may be determined from measurable properties of a diffracted electron

beam for a particular LEED system [6].

1.3.2 Preparation of Samples

Materials to be studied in a LEED experiment must first be prepared to ensure that a well-
ordered, cleaned crystal face is available [6]. A large number of procedures for preparing
a sample have been developed over the years, and each material has its own procedure
for effective preparation. Typically one begins by cleaving or cutting the sample along
the desired crystallographic direction. One then begins cleaning the surface in vacuum
by any of several methods. The sample may, for example, be heated to near its melting
point for several hours (a process called annealing) to help desorb contaminants from the
sample into the surrounding vacuum. One may also perform chemical cleaning of the
sample, or bombard the sample with an ion beam in an attempt to knock contaminants
from the surface (called sputtering). Cleaning by sputtering will generally be followed
by additional annealing in order to repair the damage done by ion beam to the surface
crystal structure. Analysis of the gases from the vacuum chamber gives an indication of

the effectiveness of the cleaning process.

Chapter 2

LEED Dynamical Calculations and
Structure Analysis

“Tum consummatum habet plenumque bonum sortis humanae cum calcato omni malo
petit altum et in interiorem naturae sinum venit.”

— Seneca, Naturales quaestiones, 1, praef., 7

THE calculation of predicted LEED diffraction spot intensity vs. electron energy
(I-V) curves is a subject of great interest in surface physics. An /-V curve may be thought
of as a sort of “fingerprint” of the surface being studied; changes in the surface parameters
(e.g. compositions and interlayer spacings) will produce changes in the /-V curves, so that
a careful analysis of the /-V curves can yield information about the surface structure.

The calculation of theoretical /-V curves is complicated by the presence of multiple
scattering of electrons by the surface atoms. This multiple scattering may be attributed
to the large scattering cross-section of low-energy electrons by the atoms. Despite this

complication, methods have been developed to allow for this multiple scattering and to

18

19

calculate LEED I-V curves for a given set of surface parameters with reasonable accuracy
[6, 11]. Because of the complexity of the calculations, however, it has not been possible
to directly “invert” the LEED I-V calculations; that is, to solve for the surface parameters
for a given /-V curve. Instead, one is forced to calculate theoretical I-V curves for a
variety of plausible surface structures, then use some means to decide which calculated
structure best fits the given curve.

This chapter will briefly review the background behind the LEED theoretical calcula-
tions, including the corrections for multiple scattering of electrons. This will be followed
by a description of several of the methods which have been devised to find the best fit
within a set of calculated I-V curves to a given (experimental) curve. Chapter 3 will in-
troduce a new method for performing this search that will be the focus of this Dissertation:

the use of artificial nevural networks.

2.1 LEED Dynamical Calculations

As mentioned in Chapter 1, the most common data set collected in a LEED experiment
is a plot of diffraction spot intensity vs. incident electron energy, or /-V curve. The
calculation of a predicted 7-V curve from theory is relatively complicated compared to
an analogous calculation in x-ray diffraction due to the presence of strong multiple scat-
tering of electrons by the surface atoms. This multiple scattering must be allowed for
in any LEED calculation, because it introduces features into the /-V curves comparable
in magnitude to the features that would be found in a purely kinematic calculation (one
not including multiple scattering). The calculation of a LEED I-V curve that includes

multiple scattering is termed a dynamical calculation, the fundamentals of which will be

20

reviewed in this section.

Intra-atomic scattering is internal to the atoms of the crystal surface. It may be
understood as an acceleration of the electron while it js in the vicinity of the atom. This
causes the electron to emerge on the other side of the atom with a phase difference in its
wave function relative to what the phase would have been in the absence of the atom,
Interatomic scattering is multiple scattering that takes place between atoms of the crystal,
both among atoms within the same atomic layer and between atomic layers. In addition
to these two types of multiple scattering, there is a potential energy step at the crystal
surface due to its inner potential which must be considered during the calculations. Each
of these effects will be described below.

The presence of multiple scattering introduces several features into the dynamically
calculated I-V curves that differentiates them from their kinematically calculated counter-
parts. Intra-atomic scattering causes peaks in the 7-V curve to shift positions relative to
their kinematically expected positions, largely toward lower energies. Interatomic multiple
scattering also shifts these peak positions, and also introduces additional peaks into the
I-V curve, beyond those that would be expected in a kinematic model. These extra peaks
are a consequence of the additional scattering paths introduced by multiple scattering;

each peak corresponds to a chain of scatterings that satisfies the Bragg condition [6].

2.1.1 The Inner Potential

The potential within a crystal is usually described by a so-called muffin-tin model, as
shown schematically in Fig. 2.1. (Due to the difficulty of drawing four-dimensional

diagrams, the figure shows a version of this potential with just two spatial dimensions;

21

potential
energy

vacuum level

image potential potential
in vacuum step muffin-fin constant
in adlayer

spherically-symmetricol
atoms

muffin- tin constant
in substrate

potential
step

—vacuum—>»

adatom’
ion core

<-adlayer -

<——subsirate—

Figure 2.1: Muffin-tin potential, for two spatial two dimensions.
(From Van Hove, Weinberg, and Chan, 1986 [6].)

the figure’s third dimension shows the potential energy.) Each atom in the crystal is
envisaged as being surrounded by a spherically symmetrical potential out to a radius Rysr
(the muffin-tin radius) from the center of the atom, beyond which the potential is assumed
to be a constant (called the muffin-tin constant). The inner potential of the crystal, which
is the kinetic energy that an electron gains upon entering the crystal surface, includes both
the muffin-tin constant and a contribution due to the dipole layer at the surface barrier
[6].

The presence of this inner potential step at the crystal surface has several effects.
First, it will cause a rigid shift of the /-V curve along the energy axis. This is because
an /-V curve is plotted against the incident electron energy; if the incident electrons gain

kinetic energy at the surface from the inner potential, each feature in the /-V curve will

22

appear at a lower incident energy than it would have in the absence of the inner potential.
Second, the incident electron waves are refracted at the surface. The component of the
electron momentum parallel to the surface is conserved across the surface boundary, while
the component of the momentum perpendicular to the surface is not. Third, there will be
a reflection of the electron wave at the surface. In most LEED calculations, the incident
electrons energies are tens or hundreds of electron volts, while the inner potential step is
just a few electron volts; consequently, this reflection effect is small and is often neglected.
Fourth, if the inner potential step has structure, there will be a diffraction of the electron
wave by the inner potential. Experience has shown that this inner potential diffraction

can be safely ignored in most cases [6].

2.1.2 Inelastic Processes

As described in Chapter 1, the LEED experimental apparatus contains a set of suppressor
grids which allow only elastically scattered electrons to reach the screen. In performing
a dynamical LEED calculation of an I-V curve, it is therefore important to identify the
various electron scattering mechanisms so that inelastic processes are excluded from the
calculation of the elastic intensity.

The dominant inelastic scattering processes in LEED are through excitation of bulk and
surface plasmons (charge density waves in the electron gas) and single-electron excitations
[6, 11]. Excitation of phonons (elastic waves in the crystal lattice) is a borderline case;
while this is an inelastic process, only a small amount of energy and momentum is
transfered between electrons and the crystal lattice through phonons and may therefore be

termed “quasi-elastic.” Phonon lossses are typically on the order of meV and are therefore

23

collected with the elastic electrons unless one is using a very high-resolution detector.
Inelastic processes are all accounted for in the LEED dynamical calculations through

the introduction of a mean free path for the incident electrons. This mean free path may

be modeled by simply adding an imaginary component to the potential energy inside the

crystal. This may be seen by writing the electron wave function ¢ inside the crystal as
'l/) ~ (i'i,/‘:,.:r, 64/»'1'11: ’ (21)

where the first factor represents the traveling wave, and the second factor models a
damping envelope due to inelastic scattering. Here A, is the wave number of the electron,

and k; is a damping constant related to the clectron mean free path A. by

1
)\0 - 3 - 2
k; (2.2)
Eq. (2.1) may be written

’(/1 ~ (3’[,<1\77»+’I/1\'7,>;IT

_ ()/’I’,A’Z.’I: ’ (23)
where k is complex:
k= k. +ik; . (2.4)

Since the electron energy within the crystal may be written as

hz k‘z

E+Vy = (2.5)

e

and k is complex, this implies that V{ is also complex:

Vo= Vor +1 V0 . (2.6)

24

Often the imaginary component of Vj is taken to be a fixed value of —4 eV. Using
Egs. (2.4) and (2.6) to equate real and imaginary parts of Eq. (2.5) shows that the imaginary

part of the potential Vj; may be related to the reciprocal mean free path k; by

h2

M)i = - I\'?,.A}',j . (27)

e

The real part Vj, of the potential is just the inner potential of the crystal described earlier.

2.1.3 Intra-atomic Scattering

Just as the variety of inelastic electron scattering processes is modeled by a single number
(the mean free path or imaginary component of the inner potential), so the complicated
intra-atomic scattering of an electron within an atom is modeled by a set of quantities
called the phase shifts. Physically, the phase shift represents the difference in phase of
the angular momentum components of the electron wave function due to the presence of
the scattering atom.

The phase shifts are determined by solving the Schrédinger equation for the system
of electrons interacting with the atom. The solution to the Schrodinger equation is the
product of the spherical harmonic Y},,(f, ¢) and a radial function R;(r), where R;(r) is

the solution to the radial differential equation [6]

7;/2 1 d 2(1R,</,-)-‘ hQZ(l + 1)
2m, <r_5) dr [’ e I Ry(r)
Ze? 7
+ —T + ‘/-9"'(7.) + ‘/(::1:(71) R[(?") = ERI(T) . (28)

Here [is the angular momentum quantum number, Z is the atomic number of the atoms

25

in the crystal, Vi.(r) is the screening potential, V,,(r) is the exchange potential, and F is
the kinetic energy of the incident electrons.

For the case of a constant potential, Eq. (2.8) has solution

gi(kr) = 3 [h}”(k'f') + hfz)(kr)} : (2.9)
where 7; is the spherical Bessel function, and h,,m and h,@ are the spherical Hankel
functions of the first and second kind, respectively [12]. The presence of the atomic

potential inside the muffin-tin radius simply introduces a phase shift §; relative to the

constant-potential case, so that the solution to Eq. (2.8) then becomes

i [CX])(2¢(51)})/51)(l{77') + }ng)(A7T)} : (2.10)

2
The phase shifts are found by solving the radial differential equation (2.8) for the

muffin-tin potential. This is done by numerically integrating Eq. (2.8) from O to the

muffin-tin radius R to find the solution inside Ry;pr. Eq. (2.10) is used as the solution

outside IRy, and logarithmic derivatives of the solutions in the two regions are equated

at the boundary I2p/p. The result is [6]

Lih? (kRyrr) = b (kRas)

exp(2id;) = : , (2.11)
(240, P (kRar) — Lihl” (kRysy)
where
R/(Rarr)
L === (2.12)
] Ri(Ryr)

The phase shifts §; are dependent on the angular momentum of the electron wave (through
the quantum number [) and on the electron energy. In calculating LEED -V spectra, one
specifies a set of phase shifts for [= 0,1,2,... /4, for various electron energies, then
interpolates between those energies to find the phase shift for any desired energy and

angular momentum.

26

2.1.4 Interatomic Scattering

To calculate the effect of the multiple scattering that takes place between the atoms of a
crystal, we begin by considering the scattering between two atoms. We will generalize
this result to calculate the scattering among atoms in a plane, and finally the scattering
between planes of atoms. The discussion here follows that given in Reference [6].

To begin, consider two atoms, labeled | and 2, at positions 7, and 7, and with atom 1
having angular momentum L;. Assume that atom | emits a spherical electron wave of
angular momentum L’ (described by quantum numbers |I',m/)). Assume also that this
electron wave arrives at atom 2 as a spherical wave of angular momentum L (described
by quantum numbers |I,m)). Then the propagation of the electron wave from atom | to
atom 2 is given by the Green’s function

—2 2m, , B
G = 47”77/21"(1 (L, L', Ly A (k[— 71)

x Y5, (7 = 7)) exp [—1? R - (7 — f‘])J , (2.13)
which describes the amplitude of the wave arriving at atom 2. Here k is the wave number
for the beam being calculated, l;i,, is the wave vector of the incident plane wave, and the
coefficients a (L, L', L) are defined by

a(L, L, L)) = / Y7(Q) Vi () Y7 (92) dS2 (2.14)

Amsr

The summation in Eq. (2.13) is over all values of [, and i, such that [—I'| <} <1+
and m; = m+m’. The wave number % is complex; its imaginary component models the
finite electron mean free path due to inelastic scattering, as described earlier.

While Eq. (2.13) describes the propagation of an electron wave from atom 1 to atom

2, the scattering of an electron is described in terms of the phase shifts §; by the ¢-matrix

27

element
h o1
t = —-227((l._) sind; exp(id;) . (2.15)

Using Eq. (2.15) to describe the scattering and Eq. (2.13) to describe the propagation of the

21 . . o
r.1 1o describe the different combinations

.

wave, we can form various products of #; and (G
of multiple scattering. In particular, all scattering paths that terminate at atom | are

described by the summation (dropping angular momentum subscripts)

T =1+ HGUR A TERCN Y TR T e , (2.16)
while those that terminate on atom 2 are described by

T° =P+ G+ PTG TR (2.17)

It has been shown [13] that 7" and T2 are simply related by

T = G (2.18)
T° = 242G (2.19)
or in matrix notation,
T! I —pg" 2
el e (2.20)
T e I £

This result may be generalized to describe the scattering among N atoms as

28

r - _ 771 _
T! g —HG? gt o _pgy o
T? —t2621 I —tQ@-% - *t2§2N £2
T3 — ___tﬂafﬂ _t‘Zéﬂ’fZ] L —tSEBN t";
2.21)
™ | NGV NG g I N

If we assume that the original incident electron wave is a plane wave cxp(i ki, -)
and that the scattered electron wave is a plane wave exp(i /?70”,, -77), then the scattering

amplitude from N atoms is given by

Trp = }N: oxp i (K = Fou) 73] T, (2.22)
j=1

For a single plane layer of identical atoms arranged in a periodic array, the symmetry

of the layer implies that
T'=T*=T7%~...=1 . (2.23)

The scattering due to N such planes of atoms may then be described by

P 1701

T! I _rlge G L IGIN -1
T'Z —72G21 I *7‘2023 L __7_2G2N T2
T3 — et 22 7 Cee _P3QBN 3 7
(2.24)
TN ‘TNGNI \TNGNZ _TNGNH L. I 7.N
L J L d L d

following a development similar to that for N atoms described earlier. In this case the

29

Green’s functions are given by

Gl = —4m%k;% i"a (L, L', Ly) by (k|7 =i+ P))
X Yi, (75 = 7+ P) exp [=ik - (75— 71+ P)] (2.25)

where P extends over all the lattice points in any of the planes, except for 7 —17; + P=0.

Finally, the amplitudes of the diffracted plane waves is given by

Moy = jl(;:,tlir;; %JIYL(0\11) T Y, '<Ein) , (2.26)

where A is the area of a two-dimensional unit cell in one of the atomic planes. The square
of this amplitude gives the /-V curve intensity.

Numerous schemes have been devised to perform this calculation efficiently. For
example, in the layer doubling method, one calculates reflection and transmission matrices
for a single pair of atomic layers, then iteratively applies the method to yield matrices for
4, 8, 16, ... atomic layers. This provides an efficient means for calculating the reflection
and transmission matrices for electron penetration into the bulk material, to which matrices
representing the surface layers may then be applied [6].

The Renormalized Forward Scattering [6] procedure is another (somewhat more com-

plex) such procedure, and was used to calculate the LEED 7-V curves for this work.

2.2 LEED Structure Analysis

The dynamical calculations just described are too complex to allow a direct inversion,

in which one could solve for the surface parameters given the /-V curve. Instead, one

30

calculates theoretical -V curves for a variety of plausible surface structures, and deter-
mines which of these theoretical curves best matches the experimental curve. While one
could attempt to visually determine which 7-V spectra best match the experimental data,
a better (and more objective) approach is to calculate a number for each of the candidate
structures that indicates how closely that structure matches the experimental data, then
use some method to search for the candidate structure that optimizes that fit. This section
will review several methods that have been used to carry out this search for the best fit

to given LEED I-V spectra.

2.2.1 Reliability Factors

We begin with a description of reliability factors, or R-fuctors used in LEED stuctural
analysis. A reliability factor is a number which gives an indication of how closely a
calculated [-V" curve matches an experimental curve. By calculating an R-factor between
the experimental /-V data and each of the candidate structures, one can determine the
best fit to the experimental data by finding the calculated structure with the minimum
R-factor.

One could, for example, calculate the root-mean-square error between the experimental
data and each calculated 7-V curve, and use the result as an R-factor. However, some
consideration must be given to the physics of the problem, rather than searching only for
the mathematical best fit between spectra. R-factors are generally designed to emphasize
features of the 7-V curves that are sensitive to surface structural parameters, while de-
emphasizing features that are sensitive to non-structural surface properties. Typically

an R-factor will emphasize such features in the I-V spectra as peak positions, relative

peak heights, peak skewness, and peak widths, although there is little agreement on the
relative importance of each of these features in determining surface geometry [6]. For that
reason, a variety of different R-factors have been proposed, each of which is designed to
emphasize different features or to be computationally advantageous in some way.

One commonly used such R-factor is the Pendry R-factor [14]. 1t is designed to
emphasize peak positions, giving equal weight to all peaks regardless of height. It also
avoids calculating the second derivatives found in some other R-factors, which can lead

to computational difficulties. To begin, Pendry defines the function Y (£) by

L41
Y(F) = ——5 , 2.27
where L(F) is the logarithmic derivative of the -V spectrum,
L)y =11, (2.28)

I is the intensity, and Vj; is the electron self-energy, which is around —4 eV for most
materials at electron energies above about 30 eV. The logarithmic derivative L tends to
treat peaks equally, while the form of the Y-function avoids singularities when I = 0.

Using this Y -function, the Pendry R-factor RPFE is defined as

S [(V= Yewn) B
RPE = S
So [(2, +Y2,) dB

(2.29)

Enxpt

Here Yz, is the Y-function of the theoretical (calculated) 7-V curve, and Yz, is the Y-
function of the experimental /-V curve. The sums are taken over all diffracted beams ¢.
A value of 0 for RPFE indicates that the theoretical and experimental curves are identical;

I indicates that they are uncorrelated; and 2 indicates anticorrelation.

32

The significance of a minimum in the Pendry R-factor may be described by the Pendry
RR-factor,

o(R)
=

RER = (2.30)

Here o(R) is the standard deviation of the Pendry R-factor and R is the mean R-factor.

__01?)_\/2 231
F - N) (-)

where NV is the number of well-separated peaks in the /-V curve. Using this result and

From statistical theory,

the fact that the 7-V curve peak widths are 2|Vy;| gives the RR factor as

8V07:>1/2

RR ~ | —= 23
55 @

where 0 F gives the the total cnergy range for the /-V curve. This result allows one to

estimate the 1-o error in the R-factor due to random errors in theory and experiment.

2.2.2 Exhaustive Global Search

The simplest and most reliable (albeit slowest) search method for LEED surface structure
determination is to use an exhaustive global search. With this method, one calculates
1-V curves for a large number of possible candidate structures, calculates an R-factor for
each one, then simply selects the structure with the smallest value of the R-factor. An
RR-factor may also be calculated to give an indication of the significance of the minimum
found.

Provided the search is performed over a sufficiently fine grid and wide range in

parameter space, the exhaustive global search is guaranteed to find the structure which

33

globally minimizes the R-factor. One then hopes that the structure with the minimum
R-factor is the one with the correct geometry.

This is not, however, necessarily the case, since [-V curves do not necessarily map
one-to-one with surface structure parameters. In other words, there may be more than
one surface structure that may lead to /-V curves that are indistinguishable to within
calculational and experimental uncertainties. One known difficulty is that LEED /-V data
is relatively insensitive to registries (layer displacements parallel to the surface), so that
different registries can produce similar /-V data [6]. Another difficulty is the relative
insensitivity of LEED data to half-wavelength changes in the layer spacings, since this
will result in phase changes of 27 in the diffracted electron wave [6]. This has led, for
example, to uncertainties in determining the interlayer spacing for the Ni(100)-c(2x2)-O
system [15, 16, 17, 18].

While the exhaustive global search method is guaranteed to find the global (rather
than a local) minimum in the error surface, it can also require substantial amounts of
computer time; the computer time required scales exponentially with the number N of
search parameters being sought. Because of this, much effort has been expended to

develop faster search algorithms. Several of these are described below.

2.2.3 Steepest Descent Method

It is a well-known result from elementary calculus [19] that the directional derivative of
a function of several variables f(Z) has its maximum in the direction of the gradient,
Vf(Z). A numerical method which takes advantage of this fact, called the steepest

descent method, [20, 21] may be used to search for a minimum in f. To implement a

34

steepest-descent algorithm, we begin by making an initial guess 7% for the values of
the independent variables 7 that will minimize the function to be optimized, ¢(), where

¥ = (z1,72,...,2,)". The next estimate for # will be given by
gV = 70 _ 4 vgr® (2.33)

for some constant & > 0. We wish to choose a so that g(#") will be significantly less

that the previous estimate, g(#(*)). The appropriate choice is the value of o for which

h(a) = g(#Y — aV (i) (2.34)

is minimum. In order to find this « quickly without having to perform a time-consuming
iterative root-finding method, one chooses three values «;, vy, and g (hopefully near the
optimum «), interpolates with a quadratic polynomial P, then uses the minimum of P to
estimate the optimum «. The entire procedure is then repeated until the minimum g is
found to within the desired tolerance.

The gradient descent method has an advantage over the exhaustive search method
in that it scales quadratically (~ N*) with the number N of parameters being sought
[22], whereas the exhaustive search method scales exponentially with N. Its primary
disadvantages are that is is prone to finding local (rather than global) minima in the error
surface being searched, and that convergence can be slow under some circumstances. The
steepest descent method 1s often used for a refined search once an approximate solution

has been found by some other method.

35

2.2.4 Simulated Annealing

Many numerical algorithms have been developed which attempt to find the global min-
imum error for a problem more efficiently than the exhaustive global search, while also
avoiding convergence to local minima. One such algorithm is simulated annealing, in
which a set of search parameters is treated much like a set of atoms in a crystalline metal.
An error function is to be minimized, and is assigned a role analogous to energy in a
physical system. One applies random perturbations (analogous to heat) to the parameters
being searched and preferentially allows the parameter set to change whenever the energy
function is lowered. Throughout the procedure, one slowly lowers a parameter analogous
to the temperature to that the algorithm converges to a minimum of the error function.
To implement a simulated anncaling algorithm, one begins be selecting a set of pa-
rameters for which an error function /v (analogous to energy) is to be minimized. One
also must select an initial value for the “temperature” parameter, 7; and an initial guess
for the search parameter values, for which the initial “energy” FE, can be calculated. To
begin the search, one perturbs each of the N search parameters by some random amount
dp (n =1...N). If the energy IV; of these new parameters is less than the energy F;
of the current parameters, then the new search parameter values are accepted as the new
current values. If the energy Iv; of the new parameters is greater than the energy FE; of
the current parameters, then the new parameters are accepted as the current parameters

with probability [23]

E; — E;

where 7' is temperature parameter, and £ is Boltzmann’s constant, which serves to set £

and 7T in the same units. This procedure is repeated a set number of times, after which the

36

temperature 7' is lowered and the entire process repeated until some convergence criterion
is satisfied.

Simulated annealing has been applied to LEED structural analysis for the Ir(110)-
p(2x 1) surface [22]. In this case, the Pendry R-factor RPE serves the role of the energy

parameter [/, since the objective is to minimize the R-factor.

2.2.5 Genetic Algorithms

A relatively recent innovation in optimization problems is the use of genetic algorithms,
which attempt to perform optimization in a way that mimics natural selection in biological
organisms. One begins with a set of “chromosomes,” representing the independent variable
and modeled as strings of bits. One then implements a reproductive cycle (including
mutations and natural selection) which produce the next generation of chromosomes.
Natural selection pressures are modeled using a “fitness function,” which the chromosomes
will tend to maximize through the course of evolution. One can thus maximize any desired
function by using it as a fitness function.

Implementation of a genetic algorithm may be most clearly illustrated with a simple
example [24]. Suppose we wish to maximize the function y = 2 over the range = €
[0, 31}, so that x may be represented as a five-bit integer. We begin by selecting several
random values of = by selecting random five-bit integers (Table 2.1); this will comprise
the initial population of chromosomes. For the purposes of illustration, the table shows
a population of four chromosomes, although a practical problem would typically employ
a larger population. The genetic algorithm will attempt to preferentially select those

chromosomes in the population that best maximize the fitness function y = 2.

37

Initial population, x Next generation
binary decimal f(z) =z* counts, f(z)/ f
10000 16 256 3
00001 1 | 0
01001 9 81 1
00001 | | 0

Table 2.1: Genetic algorithm results for maximizing y = f() (initial population).
The first two columns show the initial chromosome population, chosen at random. The
third column gives the fitness function for each chromosome, and the last column gives
the number of copies of each initial chromosome that will be used in the mating pool.
The average value of f(x) is f = 84.75.

As shown in Table 2.1, we begin by evaluating the fitness function f for each chro-
mosome value x in the population; larger values of f indicate chromosomes that better
maximize the fitness function.

The next stage of the algorithm is to perform reproduction of the chromosomes in the
initial population. This is done by preferentially choosing those members of the initial
population with the highest values of the fitness function to make up a mating pool from
which the next generation of chromosomes will be formed. In particular, the mating pool
consists of f(x)/ f copies of chromosome x, as shown in the table. From this mating
pool, chromosomes are randomly arranged in pairs which will serve as the “parents” for
the following generation.

The reproduction stage is followed by the crossover stage, which mimics genetic
crossovers [25]. For each pair of chromosomes in the mating pool, a crossover point is

chosen at random within the string of bits. Offspring are formed for the next generation

38

Mating pool Crossover New Population New
decimal binary Point Mate Binary Decimal f(x)
16 1/0000 1 3 10000 16 256
16 100]00 3 4 10001 17 289
16 1/0000 I 1 10000 16 256
9 010]01 3 2 01000 8 64

Table 2.2: Genetic algorithm results for maximizing y = f() (second generation).
The first two columns show the chromosomes in the mating pool, where the vertical
bar shows the crossover point, selected at random (column 3). The chromosomes are
paired at random (column 4), and the resulting offspring, including crossovers, are shown
in columns 5 and 6. The final column gives the fitness function for the new (second
generation) population of chromosomes.

by copying each of the parents, while exchanging their bit patterns beyond the crossover
point. In general, a crossover will occur with probability p..; for this example, we assume
a crossover probability p, = 1 so that a crossover always takes place. The offspring
resulting from this process for this example are shown in Table 2.2.

The final stage in a genetic algorithm is to model a mutation, in which bits in the
chromosome string are randomly changed between 0 and 1 with probability p,,. This
mutation helps keep the algorithm from converging to a local maximum in the fitness
function so that it may more readily find the global maximum. For this example, p,, was
chosen to be 0, so that mutations are not modeled. This set of offspring chromosomes is
then used as the initial population for another iteration through the algorithm. As seen in
Table 2.2, the second-generation population of chromosomes has a higher value of f than

the initial population (Table 2.1), so that these chromosomes indicate values of = which

39

better maximize f.

A number of variations of the basic algorithm just described may be employed. One
may, for example, allow multiple crossover points in the chromosomes, or employ elitism,
in which the best one (or more) chromosomes in a population are guaranteed survival
to the next generation, while the crossovers and mutations are applied to the remaining
population.

Genetic algorithms have recently been used [26] for LEED surface structure determi-
nation of Ir(110)-(1x2) missing row structure, involving three independent search para-
meters. In this case, each chromosome models a single candidate structure in the space
of surface structure parameters to be searched. Since a genetic algorithm will tend to
maximize the fitness function, but we wish to minimize the R-factor, the fitness function
was taken in this case to be 2 - RPE, where RPE is the Pendry R-factor described
above. This model employed a population size of 50, with each chromosome containing
7 bits. Elitism was used to increase the algorithm’s convergence speed, in which the best
five chromosomes in each population are guaranteed survival to the following generation.
In this study, a genetic algorithm was used to find the approximate location of the global
minimum R-factor, with a conventional steepest descent used to find the minimum more

accurately.

Chapter 3

Artificial Neural Networks

’

“Mihi contuenti semper suasit rerum natura nihil incredibile existimare de ea.’

— Pliny the Elder, Historia naturalis, XI, 2, 6

3.1 Introduction

THE development of the electronic digital computer has been one of the landmark
achievements of twentieth century technology. It provides the physicist with a powerful
tool for solving problems whose sheer size would make them difficult or impossible to
solve otherwise.

A digital computer may be used to solve problems in several different ways. If the
solution to a problem may be determined analytically, a computer may be programmed
with instructions to carry out the numerical computations given by the solution. In many

cases, however, an analytic solution to a problem cannot be found. In this case, a computer

40

41

may be used to implement a search algorithm or other iterative technique to converge upon
a solution. This requires that a method for finding the solution to the problem be described
to the computer in the form of computer codes, which the computer can then execute at
high speeds. This is the case, for example, for the inverse LEED -V problem described
in the previous chapter.
Recent years have seen the development of innovative new approaches to the solu-
“tion of such problems. In artifical intelligence, for example, one designs computer codes
which, in some sense, are able to teach themselves how to solve certain classes of prob-
lems. One of the most interesting of these artificial intelligence algorithms is the use of
artificial neural networks, in which a computer code is designed to mimic the operation of
a biological neural network such as the human brain. This chapter will give an overview
of artificial neural networks, with particular emphasis on the backpropagation networks

that are of interest in solving the inverse LEED -V problem.

3.2 Biological Neural Networks

In beginning a study of artificial neural network algorithms, it is instructive to first review
the biological neural networks after which they are patterned. This section will review the
molecular biology of biological neural networks as they occur, for example, in the human
central, peripheral, and autonomic nervous systems. An understanding of the operation
of biological neural networks will help to clarify the motivations behind several aspects
of the design of artificial neural networks, which will be of interest in solving problems
in LEED.

A typical biological nerve cell, or neuron, is shown schematically in Figs. 3.1 and

42

i
il
I

\/

cell body dendrites axon (less than 1 mm to terminal branches of axon
more than 1 m in length)

Figure 3.1: Schematic figure of a typical vertebrate neuron.
(After Alberts et al., 1994 [27].)

3.2. Its cell body consists of a lipid bilayer plasma membrane which encloses the cell
nucleus containing most of the cell’s genetic information. The remaining cell contents,
or cytoplasm, consist of a jelly-like cyrosol, in which is suspended the cell’s various
organelles. These organelles include the mitochondria which produce the adenosine 5'-
triphosphate fuel used to power the cell’s chemical reactions; the endoplasmic reticulum,
where protein synthesis takes place; and the Golgi apparatus, which receives lipids and
proteins from the endoplasmic reticulum and sends them to the parts of the cell where
they are needed.

Extending out from the neuron’s cell body is one long axon, which is the path along
which an outgoing nerve impulse is sent. The axon ends in a series of terminal branches,

each of which may be used to send nerve signals to other neurons. Also attached to the

yelin 7
(oligodendrocyte)

Figure 3.2: Details of nerve cell body.
(After Purves et al., 1997 [28].)

. Ranvier

43

44

cell body are a set of shorter dendtrites, which act as “antennas” for receiving signals
from the axons of other neurons. The dendrites essentially increase the surface area of the
cell body, allowing the neuron to receive as many as 10° inputs from other neurons [27].

The basic mechanism by which nerve impluses are transmitted from neuron to neuron
involves gated ion channels, which are pores in the plasma membrane through which ions
(such as K* or Na") may diffuse whenever the channel’s gate is open. Several types of
gated ion channels exist, and are classified according to the type of stimulus which opens
them. For our purposes, the most important of these are voltage-gated ion channels, in
which an electrical potential difference across the plasma membrane causes the gate to
open; and transmitter-gated ion channels, in which a chemical called a neurotransmitter
acts as a sort of “key” to open the gate.

A nerve impulse (or action potential) travels along the axon by means of voltage-gated
ion channels built into the surface of the axon. When a stimulus depolarizes the plasma
membrane enough to open a voltage-gated ion channel on the axon, cations are allowed to
diffuse into the axon through the channel. This causes further membrane depolarization,
allowing other nearby channels to open, causing further depolarization. A separate inacti-
vating mechanism causes the channel to quickly close, while the nearby channels, having
opened slightly later, continue the process of opening their nearby channels before closing
themselves. The result is a domino-like propagation of opening and closing ion channels
along the length of the axon. Because of the self-sustaining nature of the propagation,
this signal can travel along the axon without attenuation.

Once the action potential has reached the end of one of the axon’s terminal branches
(at a junction called the synapse), the electrical potential triggers the release of neuro-

transmitters, which are stored in membrane-bounded synaptic vesicles near the end of the

45

terminal branch. These neurotransmitters pass through the plasma membrane across a
gap called the synaptic cleft which physically and electrically separates the axon from its
neighboring neuron. The neurotransmitters act like “keys” which open transmitter-gated
ion channels on the neighboring neuron, allowing cations to enter the cell body of that
neuron. Once enough of these transmitter-gated ion channels have opened, the plasma
membrane of this neighboring neuron will become sufficiently depolarized to activate an
action potential along its own axon, and the whole process begins again in the neighboring
neuron.

Several key features in this description of biological neurons are important to note,
as they are incorporated into the design of artificial neural networks. First, each neuron
may be connected to many other neurons through the terminal branches at the end of
the axons. Second, an action potential in a neuron is triggered only after input stimuli
from neighboring input neurons have exceeded a certain threshold. Third, once an action
potential has been activated, further input from neighboring neurons has no effect. The
input has been essentially saturated with inputs from neighboring neurons once the inputs

have exceed the level to trigger an action potential.

3.3 Artificial Neural Networks

Artificial neural networks are algorithms that attempt to mimic, in a simplified fashion,
the behavior of networks of the biological neurons described above. They are of interest
to neurobiologists as a simple model of the human brain; understanding the ways in which
neural networks learn to recognize patterns may provide some insight into human learning

and behavior. Artificial neural networks are also of more general interest as a problem-

46

solving tool: since they are particularly adept at pattern recognition, they may be useful
in solving certain types of problems which are intractable by traditional methods. It is
this latter use of networks that will be of interest here.

Many different types of neural network algorithms have been developed since they
were first conceived in the 1940s. In general, an artificial neural network consists of
a set of nodes, each of which contains a numerical value. The nodes are connected
to each other through a series of directed lines (as shown in Fig. 3.4), each of which
carries an associated value called a weight, . Since the connecting lines are directional,
each node will generally have several input connections and several output connections.
A node’s value will be a function of the values of the nodes which feed in to it, the
weights associated with the corresponding input connections, and an activation function
which limits a nodes value to a restricted range. The nodes are meant to be analogous
to the neurons of a biological neural network: the interconnections are analogous to the
biological axons and synapses; and the activation function models the saturation of a
neuron by signals from input neurons.

Using an artificial neural network typically begins by setting the values of a set of
input nodes to describe the problem to be solved. One then calculates the values of all
the other nodes in the network, and finally reads out the values of a set of output nodes
which describe the solution to the problem. The network’s ability to solve the problem
being asked of it is determined by the network’s weights, which may be determinined by
several different methods. Most often this involves what is called supervised learning, in
which the network is shown a series of example inputs. The network calculates the output
node values for these examples, and some means is used to adjust the network weights

for the error between the network’s results and the expected results. This process (called

47

training) is repeated over many iterations until the network weights have converged and
the output nodes are able to produce the correct output nodes values for each of the
examples on which it is being trained.

Another means of determining the network weights is unsupervised learning, in which
the network trains itself by setting its own weights without having to be shown examples.
In this case, the network will only be able to group similar inputs together and decide
which group a given input is most similar to. Network weights may also be fixed; this
type of network may be useful in solving constrained optimization problems, where the

network weights represent the constraints in the problem

3.3.1 Examples of Artificial Neural Networks

How artificial neural networks are used in practice might best be illustrated by describing
a few examples. One typical example is the design of a network to recognize letters of
the alphabet [29]. Each letter may be encoded on a grid, as shown in Fig. 3.3; the value
of each point in the grid (I for “occupied” or —1 for “unoccupied”) is then fed to the
network at its input nodes. There may then be one output node for each possible letter,
with an output value of | in an output node indicating the presence of the corresponding
letter. Using supervised learning, such a network can be trained to recognize the letters on
which it was trained—not only in their original form, but also with significant deviations
from the original forms. This makes it possible for such a network to recognize human
handwriting with remarkable accuracy.

Other uses for neural networks include speech recognition and production, medical

diagnosis, and signal processing. Recent attempts have also been made to use neural

48

. kkkkkk L RRRk kokokkkk | >k 3k > % 3k % %
Kk ...k KLk KLk koo,
KRk, * koo, * * *, ...,
X, ., . %, %k %k X % %k X, ..., * * % >k ok k
Fokokkxk * * .o, * * X,
X, * KLk LKLk LKL Lk *, ...,
* * kokokkkok | R 3 X kK Xk kK Xk % K %k k %k k Xk

Figure 3.3: Encoding of letters for character recognition.

networks in finance, in an attempt to forecast stock and commodity prices. The success
of such financial applications, however, is limited by the nature of the financial markets:
if a network is ever developed that can successfully forecast stock or commodity prices, it
would quickly become so widely used that it would no longer work. One must be careful,
therefore, to ensure that the use of a neural network is appropriate for the problem at

hand.

3.4 Backpropagation Networks

One of the most commonly used neural networks, and the type used in this work, 1s
a backpropagation network. A backpropagation network consists of a set (or layer) of
input nodes, one or more layers of hidden (or medial) nodes, and a layer of output nodes,
as shown in Fig. 3.4. Data propagates through the network in one direction: from the
input layer to the hidden layer to the output layer, through a series of connections that
join each node in a layer to each of the nodes in the layer below it (in an arrangement
known in graph theory as a complete bipartite graph [30]). It has been shown [29] that

a single layer of hidden nodes is sufficient to approximate any continuous function of the

49

Input layer

Hidden layer

Output layer

Figure 3.4: An artificial neural network.

input nodes, although in some circumstances the network may train more easily with two
hidden layers. The network used for the research described in this work uses a single
layer of hidden nodes.

Each connection between two nodes of a backpropagation network has an associated
weight, which determines the fraction of a node’s signal that will be received by a node
in the layer below it. The set of all the network’s weights determines the values of the
output nodes for a given set of values in the input nodes. Specifically, suppose that there
are I nodes in the input layer with values x;, J nodes in the hidden layer with values
z;, and K nodes in the output layer with values y;. Then the values of the hidden layer
nodes in a simple network are found from the input node values from [29]

I
<y = f<l'()j + Z‘Tﬂv'ij) N (31)

=1

50

where v;; is the weight associated with the connection between node 7 of the input layer
and node j of the hidden layer. The weight vy; is called a bias weight, and serves to bias
the node inputs into the correct range for the activation function f(x) [31]. The function
f(x) in Eq. (3.1) (called an activation function or sigmoid function) limits the value of
its argument to a finite range, in analogy with the saturation of a biological synapse. For
this work, the activation function has been chosen to be

B 1
C l4ew

f(x)

: (3.2)

to limit the weights to the range [0,1], as shown in Fig. 3.5.
Having found the hidden node values z,, the values y;, of the output layer nodes are
given by
J
= [(’“)()k; +> Zj“)jk:) : (3.3)
J=1
where wj; is the weight associated with the connection between node j of the hidden

layer and node % of the output layer, with wy; being the bias weight.

3.5 Scaling

The performance of a backpropagation network may be improved by ensuring that the
values of the output nodes fall within the linear range of the activation function, This
may be accomplished by scaling the output values. If y is a network output node value
calculated by Eq. (3.3), then it may be scaled to within the linear range of the activation
function by applying [32]

Y — Ymin
Yscaled = (Smax - Smin) + Smin (34)
Ymax — Ymin

Activation function f(x) = 1/(1+e™)

Figure 3.5: Activation function f(z) = 1/(1+e™%).

51

52

where ynax and i, are the maximum and minimum expected unscaled output values
and S,,x and s, are the maximum and minimum desired scaled values. Typically one
chooses Syax = 0.9 and sp,;, = 0.1 for the activation function given by Eq. (3.2).

In addition to placing the network outputs in the linear range of the activation func-
tion, scaling has the additional advantage of rendering the network outputs dimensionless
by cancelling any units that may be associated with the outputs. This allows different
quantities, such as compositions (in percent) and interlayer spacings (in angstroms) to be
on an equal footing for error backpropagation.

Similar scaling of the inputs 1s not required, since any such scaling would simply be

absorbed by the weights in the connections between the input and hidden nodes [32].

3.6 Learning

Equations (3.1-3.3) are the basic equations for the feedforward phase of running the
network. In this phase, the input nodes are set to the desired input values, the network
node values are computed. and the output node values give the result for the given weights.

The next phase in running the network is the backpropagation phase, in which the
network weights v;; and w,;, are adjusted to correct for the error at the output nodes. To
find the amount by which the network weights should be adjusted, we begin by writing

an expression for the mean squared error in the network output [32]:

% ZTJYZI ?:1 (Ukn - tk‘n.)2
NK ’

Etot,al = (3 5)

where /V is the number of training examples available to train the network, K is the number

of output nodes, ys., is the k' scaled network output for the n'"" training example, and

53

t4,, is the k™ scaled target (i.e. “correct”) output for the nth training example.
g p g p

3.6.1 Error Derivatives for Hidden-to-Output Weights

We begin by examining the weights w;j between the hidden and output nodes. These
weights may be adjusted using a gradient descent method, which will require that we find
the derivative of the error with respect to the weights. Writing the squared error for one

output node as F, we have

E= i (/UA', - tk>2 . (36)

2

Using the chain rule, we differentiate FE with respect to the weight w;; as

oF O Oy, O

Owe Oy Ony Ow i,

Here 7 is the quantity

J
e = Wok + Z 2 Wik (3.8)

j=1
from Eq. (3.3). The first factor on the right of Eq. (3.7) is found by simply differentiating
Eq. (3.6), so that

= — b - (3.9)

To compute the second factor on the right of Eq. (3.7), we note that from Egs. (3.3) and

(3.8),
= flm) (3.10)
Then

—— = ') - (3.11)

Using Eq. (3.2) for f, we find

" _ (&
f (T‘) (1 + ())7;1,,);
1 e "
- — . (3.12)

Now note that from Eq.(3.2) that

1
1— fle) = 1-—
(o) —
(:,4.],'
= . 13
1+e (3.13)
From Eqgs. (3.12) and (3.13) we see that
goN 1 e "
fx) 1+e™ 14
) U= fa)] - (3.14)
Eq. (3.11) is then found using Egs. (3.10) and (3.14) to give
():I/Ar "y,
Ny, 1)
= fln) L= SOw)]
= (1 —ys) - (3.15)

Finally, the third factor on the right of Eq. (3.7) is found by differentiating »;, with respect

to the weight w;;. Since

J
e = Wok + Z ZjWik

J=1

we find

o
ow

(3.16)

55

If we define p; to be the first two factors in the error derivative (3.7),

_ 9B Oy 3.17)

then Eqgs. (3.9) and (3.15) give

P = (e — te) ye (L—yr) - (3.18)

The error derivative of Eq. (3.7) may then be written by combining Egs. (3.16) and (3.18)

to give

f)E Pk lf 7 - ())
= (3.19)

Dh Zj it 7>0.

Ow,y,

Eg. (3.19) gives the change in the network output error £ for a given change in the

hidden-to-output weights w ;.

3.6.2 Error Derivatives for Input-to-Hidden Weights

Having found the derivatives of the output node errors £ with respect to the hidden-to-
output nodes weights w;, we now find the derivatives with respect to the input-to-hidden

weights v;;. From the output node errors given by Eq. (3.6)

E=3(y—t)

we find the derivative with respect to the weights v;; using the chain rule, as before:

08 _ 0B 0z 0G
é?vij B (',92:.7' (9C, 8’1)7;‘7' .

(3.20)

56

where (; is the quantity
I
G = vo; + Z i Vi 3.2DH
i=1

from Eq. (3.1). We begin with the first factor on the right of Eq. (3.20). From the analysis

of the proceeding section (Egs. (3.9) and (3.15)) we can write

or
- =y —t, (3.22)
.
(97“.
= = o (1 —) . 3.23
e i (1 — yr) (3.23)

Then the product of the first two factors in Eq. (3.20) is

oL Oy,

2 g —)y (1 —) = -
Ay Oy, (e — i) e Ur) = pi ()

from Eq. (3.17). We then have

oL & O

— = PeT— - (3.25)
0z A; 0z
Using Eq. (3.8) for n,,
J
e = Woy + Z Zjw (3.26)
j=1
we find
O, 3.7
= 3.2
0z, i (

Then the first factor on the right of Eq. (3.20) may be written

0F S (3.28)
— =) DpWjg . .
82/ 1 l

To find the second factor on the right of Eq. (3.20), we note that

zj = f(¢;) (3.29)

from Egs. (3.1) and (3.21). Then, using the results from the previous section, we may

write
0‘3;/ gt
T F(G)
= F(G) 1= f(¢)]
= (1) (3.30

Finally, we find the third factor on the right of Eq. (3.20). Using Eq. (3.21) for ¢},
I
CI = Uy -+ Z iV, (33])
=1
we have for the third factor on the right of Eq. (3.20)

o, 1 it i=0,
- = 3.32
07),»‘,» ()

L it >0 .

If we define

K
q; = <Z D ’11)‘“,) 2 (1 —2z) (3.33)

k=1

then the error derivative for the input-to-hidden weights (Eq. (3.20))can be written

OF q, it =0,
= (3.34)
()U,‘,j . .

' q; T if >0 .

3.7 Learning Algorithms

Egs. (3.19) and (3.34) give the derivatives of the network error £ with respect to the

hidden-to-output weights w;; and the input-to-hidden weights v;;, respectively. These

58

error derivatives may be used to determine the amounts by which the network weights
should be changed, given the network output errors. Let u,, be a network weight (either
v Or w;g) at training epoch m, and d,, be the sum over all N training examples of the

derivatives of the network output errors v with respect to the weights:

N .
oF

yy, = —_— 3.35

”2::1 Oy, (3.35)

where the derivatives will be given by Eq.(3.19) or (3.34). At training epoch m, we wish

to adjust the weight u,,, by some amount ¢,,, so that
Uy = Uyt + Cppy (3.36)

where ¢, will depend in some way on the error derivative d,,,.

3.7.1 Constant Learning Rate

The simplest learning algorithm is one in which the change in the network weight is

proportional to the error derivative [32]:
Cip = —€ dm, s (337)

where ¢ is a constant called the learning rate. This algorithm is computationally fast, but
may not work well with a complicated error surface such as those encountered in LEED
problems. If ¢ is chosen to be too large, then the network weights will be adjusted in
large increments—perhaps too large to find the global minimum of the error surface being
searched. If € is chosen to be too small, the network may require an excessive number of

training epochs to converge.

59

3.7.2 Momentum

One method of improving the convergence speed of a network over that of a constant
learning rate is the use of momentum, which will give the network the ability to adjust
its weights preferentially in the direction in which they have been changing previously.
A learning algorithm employing momentum will update the network weights at epoch m

according to [32]
Con = oy — (1 = p)edy, | (3.38)

where p 1s a momentum parameter (0 < p < 1). Larger values of ¢ will cause the
weight changes to be more influenced by previous values of the weight changes; a value
of 1 = 0.9 is typical.

Momentum is generally not needed if the network is trained by batch learning [32]
(described below). Since batch learning was used for network training throughout this

Dissertation, momentum was effectively disabled by setting 1 = 0.

3.7.3 Adaptive Learning Rates

Yet another method of improving the network’s convergence speed is to use adaptive
learning rates in which the network weights are updated in larger or smaller increments
depending on whether recent updates have been in the same direction or in opposite
directions. One begins by writing an exponential average f,, of the error derivative d,,

[32],

fm+l =1 fm + (1 - H) dy,) (3.39)

60

where the parameter § (0 < # < 1) determines how much weight is assigned to the past
values of the error derivatives; the larger the value of f, the more weight is assigned to
past values of the error derivatives and less weight to the current value. Typically one
may choose ¢/ = 0.7.

Then the change to the network weights is given by
Cm = —Cm dwn s (340)
where e,, is the learning rate, which is computed from

Con—1 + K if dm.,fm >0)
Copy = (341)

Com_1 X if dofo <0 .

Here x and ¢ are parameters that may be used to adjust the adaptive learning rate. If
dmfm > 0, then the network weight is currently changing in the same direction as it
has been in the past; in this case, it is desirable to make relatively large changes in the
network weight by incrementing the learning by the parameter «. If d,, f,, < 0, then the
network updates have changed sign, and it is desirable to make smaller changes in the
weight by multiplying the previous learning rate by the parameter ¢ (0 < ¢ < 1). Note
that this adaptive learning technique requires that a separate learning rate be maintained
for each network weight, increasing the computer memory requirements.

Typically one may choose x = 0.1 and ¢ = 0.5, although it may be necessary to scale
the parameter & to the number of training examples if batch training is being used, as
described shortly.

One may use both momentum and adaptive learning rates by replacing Eq. (3.40) with

Cm = Cm1 — (L — p) emdy, (3.42)

61

Since momentum was disabled in the Dissertation work in favor of batch learning, the

momentum parameter /1 was set to 0.

3.8 Weight Initialization

In order to begin network training, one must begin with some initial values for the network
weights which can be later adjusted by the learning algorithms. The usual practice is to
initialize the network weights to small random values [29, 31]. Small initial weights are
chosen in order to prevent premature saturation of the network nodes; the initial weights
are chosen to be random as a symmetry-breaking device, in order to keep different weights
from performing the same function in the network and thus becoming redundant [33].

It has also been suggested [32] that half of the hidden-to-output node weights w;;, be
initialized to +1 and the other half to —1 in order to improve convergence speed, but this

technique did not seem to work well for the LEED problems being investigated here.

3.9 Batch Learning

When training the network, one may adjust the network weights after showing the network
each example in the training data set. This approach, however, tends to bias the network
weights; once the training 1s finished, the network will tend to best model the last example
it was shown.

This difficulty may be avoided by training the network by batch learning, in which the
network is shown all examples in the data set, one by one, without adjusting the network

weights, but accumulating the total error. The weights are then adjusted according to the

62

total (net) errors found after all examples have been shown to the network. Batch learning
was used for all network training throughout this Dissertation.

When using batch learning with an adaptive learning rate, it may be necessary to scale
the learning parameter x to the number of examples in the training set if a large number
of examples is used. This was found to be the case during the course of this Dissertation,
when the network training during the investigations of Chapter 6 required decreasing

to prevent the network from diverging for large numbers of training examples.

Chapter 4

Development of Artificial Neural
Networks for LEED Surface Structure
Determination

“Natura materiae doctrinae est; haec fingit, illa fingitur.”

— Quintilian, Institutio oratoria, xix, 3

AS discussed earlier, one of the main computational difficulties encountered in the
interpretation of experimental LEED data is the difficulty of inverting the dynamical LEED
calculations; i.e. determining the arrangement of atoms near the crystal surface given the
experimental /-V curves. This chapter describes the author’s research in developing an
artifical neural network capable of identifying a surface structure that corresponds to a
given LEED -V curve.

The general approach to using a neural network to solve the inverse LEED search
problem is to use standard computer codes [11] to perform the LEED dynamical calcu-

lations that generate predicted /-V curves for a variety of candidate surface structures.

63

64

These curves are then used as training data on which to train the neural network. Once
the network is trained, it is given an experimental /-V curve and asked to identify the
surface structure parameters (atomic compositions and interlayer spacings).

This chapter will describe the computer codes developed by the author to implement
such a neural network, as well as the initial functional and performance testing of the

network.

4.1 Network Program Design

The neural network developed here for LEED surface structure determination was imple-
mented as a computer program written in standard ANSI C and run on a Silicon Graphics
computer with a UNIX operating system. C was chosen as the language of implementation
because it is widely used, highly portable, and well suited for the project at hand.

The neural network program developed for this Dissertation, called LEEDNET, imple-
ments a backpropagation algorithm as described in Chapter 3. LEEDNET is a text-based
program with a command-line interface. Commands may be entered into the program
either interactively or as scripting files; the latter feature allows the program to be run as
a batch job when large amounts of computing time are required. Commands are included
to train, run, and test the network, format the data in the training file, adjust the network
learning parameters, save and load network weights, etc. The complete set of commands
is described in Appendix A (the LEEDNET User’s Guide), which also includes general
instructions for use of the program and a description of the LEEDNET input data format.
A listing of the complete LEEDNET program is given in Appendices B-E.

The LEEDNET backpropagation algorithm includes adjustable adaptive learning rates

65

Pattern | Expected £ | Network k& | Error (%)
1 1.000000 0.00
2 2.000000 0.00

y =sinx
Yy = sin 2z

Table 4.1: Network recognition of y = sinkx for k =1, 2.
The network was trained for 100 training epochs using 640 input nodes, 40 hidden nodes,
and 1 output node, and using adaptive learning.

with an optional momentum term, each of which may be enabled or disabled as desired.
The program is designed to train the network by batch learning (described in Chapter 3)

to prevent biasing the network weights in favor of the last example it was shown.

4.2 Initial Testing

Once a basic version of the program had been written, it was initially tested by checking
its ability to distinguish two different patterns with a single varying parameter. The two
functions ¥y = sinz and y = sin 2z for were chosen as the test patterns because of their
simplicity and their similarity to the LEED I-V curves which would ultimately be used.
A data set was created containing both functions sampled at 640 equally-spaced values of
x for x € [0,27], and this data set was used to train the network. Once trained on both
patterns, the network was shown each of the patterns individually and asked to identify
the parameter £ in y = sin kx. The results, shown in Table 4.1, show that the network
was able to identify k perfectly to seven significant digits after just 100 training epochs.

The next phase of the initial testing was to check the network’s ability to recognize a

66

Pattern | Expected A I Network A | Error (%)
1 ' 1.016348 ’ 1.63

Yy =sinx

y = 2sinx 2 1.984289 0.79

Table 4.2: Network recognition of y = Asinz for A =1, 2.
The network was trained for 500 training epochs using 640 input nodes, 40 hidden nodes,
and 1 output node, and using adaptive learning.

different parameter, the amplitude of a sinusoidal pattern. Two sinusoidal patterns were
created, again with a single adjustable parameter: y = sinz and y = 2sinz, using 640
equally-spaced points for = € [0,27]. These patterns were used to train the network
for 500 epochs, and the network was then tested by showing it the individual training
patterns and asking it to identify the amplitude. The results are shown in Table 4.2,
and show that the network was able to successfully identify the sinusoidal amplitudes
as well. The results are not as dramatic as in the previous test, however; the network
was found to be somewhat less adept at recognizing sinusoidal amplitudes than it was at
identifying frequencies. Training required 500 epochs rather than 100 before the training
error reached its lowest value, and the independent test results show larger errors.

The network’s greater ease in recognizing sinusoidal frequencies is of benefit to the
use of networks in LEED structural analysis, since it is generally regarded [11, 34] that
peak positions in /-V curves are of greater importance than the magnitudes of the peaks.

Having passed these simple tests with just two training examples, the network was
next tested for its ability to recognize several different values of sinusoidal frequencies.

For this test, the training data consisted of the pattern y = sin kx for a single varying

67

Pattern Expected £ | Network % | Error (%)

y =sinzx I 1.000000 0.00
Yy = sin 2z 2 2.000000 0.00
Yy = sin 3z 3 3.000000 0.00
y = sindxz 4 4.000000 0.00
Y == Sin o 5 5.000000 0.00

Table 4.3: Network recognition of y = sin kz for k = 1,2, 3,4, 5.
The network was trained for 160 training epochs using 640 input nodes, 40 hidden nodes,
and 1 output node, and using adaptive learning.

parameter k& = 1,2,3,4,5 and 640 equally-spaced values of z for z € 0,27]. After
training for 160 epochs, the network was shown each of the five patterns individually and
asked to identify the frequency. The results, shown in Table 4.3, show that the network
was able to recognize the sinusoidal frequencies perfectly to seven significant digits after
just 160 training epochs.

A similar test was performed to check the network’s ability to recognize several values
of the sinusoidal amplitude. The pattern y = Asinz was used to generate training data
for the single varying parameter A = 1,2,3, using 640 equally-spaced values of z for
z € [0,27]. The results of showing the trained network each of the three individual
patterns (Table 4.4) show that the network was successfully able to identify A in each
case, although more trainining epochs were required than for the frequencies, and the
errors were larger (although still quite small).

The final phase of this initial testing was to test the network’s ability to simultaneously

recognize both the frequencies and amplitudes of a sinusoidal pattern. Training data

68

Pattern Expected A | Network A j Error (%)

Yy = sinx l 0.999996 0.0004
y=2sinz 2 2.000007 0.0004
y=J3sinzx 3 2.999994 0.0002

Table 4.4: Network recognition of y = Asinz for A= 1,2, 3.
The network was trained for 2000 training epochs using 640 input nodes, 40 hidden nodes,
and 1 output node, and using adaptive learning.

was generated of the form y = Asin &z, with two varying parameters, A = 1,2, 3 and
k =1,2,3,4,5, and using 640 equally-spaced values of = for = € [0,27]. After the
network was trained for 2000 epochs it was shown each of the individual sinusoidal
patterns and asked to identify both the amplitude and frequency. The results are shown
in Table 4.5, and demonstrate that the network was able to successfully identify both

parameters simultaneously in each case, to within a small error.

4.2.1 Adjustment of Network Parameters

The data sets used for the initial network testing included 640 data points for each training
pattern, since this was the number of data points available for the /-V data to be used
later. This allowed the network parameters (such as the adaptive learning rate constants
and number of nodes in the hidden layer) to be adjusted for a data set of the same size
as the LEED [-V data set.

This initial testing of the network provided an opportunity to evaluate the performance

of different learning algorithms and parameters. The use of an adaptive learning rate was

69

A k Error (%)
Pattern Expected Network | Expected Network A k
Yy =sinw | 1.003167 | 1.001520 | 0.317 0.152
Yy = sin2x 1 0.999579 2 1.999990 | 0.042 0.001
Yy = sindzx 1 0.993953 3 2.999819 | 0.605 0.006
y = sin4x I 0.999770 4 4.000034 | 0.023 0.001
y = sin bx 1 1.002643 5 4.998514 | 0.264 0.030
y = 2sinx 2 1.998000 1 0.996934 | 0.100 0.307
y = 2sin 2z 2 2.000197 2 1.999989 | 0.010 0.001
y = 2sin 3w 2 2.004977 3 3.000042 | 0.249 0.001
y = 2sin4x 2 2.000124 4 3.999911 | 0.006 0.002
Yy = 2sindx 2 1.998523 5 5.003198 | 0.074 0.064
y = 3sinx 3 3.000749 1 1.001694 | 0.025 0.169
y = 3sin 2z 3 2.999926 2 1.999971 | 0.002 0.001
y = 3sindx 3 2.996878 3 2.999903 | 0.104 0.003
y = 3sindx 3 2.999937 4 4.000066 | 0.002 0.002
y = 3sin dx 3 3.0006014 5 4998162 | 0.020 0.037

Table 4.5: Network recognition of y = sinkx for A =1,2,3 and k = 1,2,3,4,5.
The network was trained for 2000 training epochs using 640 input nodes, 40 hidden nodes,
and 2 output nodes, and using adaptive learning.

70

found to significantly increase the convergence speed of the network. Here the learning
rate e,, at epoch m in the training is taken to be

em_1 + K for weights changing in the same direction,
Cm = 4.1)

em_1 X ¢ for weights changing direction.

To demonstrate the effectiveness of an adaptive learning rate, the network was trained
on problems in the previous section involving the determination of two parameters of a
sinusoidal pattern (Table 4.5), both with and without an adaptive learning rate. Figure (4.1)
shows the network test error as a function of the number of training epochs in each case,
and clearly shows the improvement gained by the use of adaptive learning in the network.
The adaptive learning case used the learning rate paramters x = 0.1 and ¢ = 0.5, while
the non-adaptive case used the constant learning rate € = (.1.

Figure 4.2 shows a similar case in which the same problem was run with adaptive
learning, but for cases both with and without a learning momentum term. The inclusion
of momentum in updating the network weights, which biases weight changes in favor
of continuing in the same direction, did not appear to significantly affect the network
convergence and was not further used in the work for this Dissertation.

Another important network parameter to be adjusted is the number of nodes in the
network’s hidden layer. Neural network theory is not sufficiently developed to allow an
a priori determination of the number of nodes in the hidden layer for a given problem
[32, 31]; instead, this number must be adjusted by trial and error. Using too few nodes in
the hidden layer will not provide enough weights to fit the training data, and the network
will not converge. Using too many nodes in the hidden layer, on the other hand, may

result in overfitting of the data and greatly increasing the training time and computer

Network training error

Comparison of Adaptive vs. Constant Learning Rates

1e-3 -

1e-4

1e-5 4

1e-6 -

1e-7

—

Adaptive learning rate
Constant learning rate

500

1000

Epochs

1500

2000

2500

71

Figure 4.1: Network error vs. training epoch, with and without adaptive learning rate.

Network training error

Effect of Momentum Term with Adaptive Learning

1e-3 o

1e-4

1e-5
—— Without momentum
~~~~~~~ With momentum

1e-6

1e-7 -+

T T T T
0 500 1000 1500 2000 2500

Epochs

Figure 4.2: Network error vs. training epoch, with and without momentum term.

72



73

Hidden Network Network Error (%)
nodes | amplitude, 4 | frequency, & A k
2 2.070583 2.083956 3098 420
5 2.999886 2.000164 | 0.0038 0.0082
10 3.000173 2.000146 | 0.0058 0.0073
40 3.000051 1.999991 | 0.0017 0.0005
100 3.000237 1.999952 ] 0.0079 0.0024
500 2.999259 1.999859 | 0.0247 0.0071

Table 4.6: Network recognition of 4 = 3sin 2z with different numbers of hidden nodes.
The network should return A = 3 and & = 2 in each case. The network was trained
for 2000 training epochs using 640 input nodes and | output node, and using adaptive
learning. Note particularly the difficulty the network has in identifying the amplitude A
when using only 2 hidden nodes.

memory requirements. By experimenting with different numbers of nodes in the hidden
layer, one may develop a network which fits the training data well enough to generalize
the training data without overfitting.

A simple example may help to illustrate the problems encountered when one uses too
few hidden nodes in the network. In Table 4.6, the function Yy = 3sin2x was used to
train a network using several different sizes of hidden layers. The results show that the
network had difficulty in identifying the amplitude of the pattern on which it was trained
when only two hidden nodes were used. The problem did not occur when more than five
hidden nodes were used.

Throughout this Dissertation, 30 or 40 nodes were generally used in the hidden layer
with acceptable results. Convergence of the network was generally unaffected by small

changes in the number of hidden nodes, so the exact value of this number was not found



74

to be critical.

4.3 Training with Calculated /-V Data

The initial testing of the network showed that it was able to correctly identify a variety
of sinusoidal functions. The next step in testing the network was to train it with actual
dynamically calculated LEED I-V spectra, calculated by standard computer codes [11].
The calculated training data was for the (100) surface of a NigoPdso alloy, for which
calculated and experimental data was available from an earlier study on surface segregation
[34]. The data was calculated for normal incidence and included (00), (10), (11), and
(20) beams for energies between 30 and 348 eV at intervals of 2 eV. The calculated data
therefore includes 160 data points in each of its four beams, for a total of 640 data points
in each structures. -V data were calculated for 180 different structures, with the top
layer compositions C'; ranging from 0 to 50% nickel, the second layer compositions
ranging from 50 to 100% nickel, and the third layer compositions C4 ranging from 30
to 70% nickel, all at 10% intervals. For all the calculated data, the interatomic layer
spacings were held constant at the bulk layer spacing of 1.87 A.

The I-V curves were entered into the input nodes of the network by assigning one input
node to each energy point, so that 160 input nodes were used for each beam. The four
beams were concatenated, so that a total of 640 input nodes were used for the network.
Fig. 4.3 shows schematically how the /-V intensities are entered into the network.

The first test of the network using calculated I-V curves involved training the network
on six different spectra which differed only in the atomic compositions (percent nickel) in

the top layer, with the second and third layer compositions and surface interlayer spacings



75

Input layer

Hidden layer

Output layer

Figure 4.3: Input of I-V data to a backpropagation network.



Training data (%Ni) Network results (%Ni)

Cy Gy Cy Cy Cy Cs

0 80 50 1.109107  80.008560 50.000000
10 80 50 9.097336  79.988876 49.999996
20 80 50 19.330671 79.995750 50.000000
30 80 50 30.411045 80.004921 50.000004
40 80 50 40.831749 80.005630 50.000004
50 80 50 49.409557 79.996788 50.000000

76

Table 4.7: Network recognition of NigPdso(100) /-V curves for six different top layer
compositions.
The network was trained on all of the structures shown, and was then shown each structure
individually and asked to identify the composition (%Ni) in each layer. Training was for
2000 epochs.

being held fixed. This approach was chosen because changes in the top layer compositions
would result in large changes in the calculated I-V spectra, which would facilitate the
network’s ability to distinguish the six patterns. Once the network was trained on these
six patterns, it was shown each of the patterns individually. The results are shown in
Table 4.7, and show that the network was successfully able to identify the top layer
compositions to within a small error.

The next stage of testing was to check the network’s ability to identify surface structure
parameters from /-V curves on which it had not been trained. That is, the test checked
the network’s ability to “interpolate” between I-V patterns on which it had been trained
in order to identify a surface structure parameter.

For this test, the network was trained on the I-V curves of five surface structures,

with 0, 10, 20, 40, and 50% nickel in the top atomic layer. The second layer was held at



77

a constant 80% nickel and the third layer at 50% nickel for all structures. The interatomic
layer spacings were held at the bulk layer spacing value of 1.87 A for all layers for each
structure. The network was trained on the /-V curves for these five structures for 2000
training epochs.

After the training was complete, the network was shown a calculated I-V curve on
which it had not been trained: 30% nickel in the top atomic layer. When shown this
I-V curve and asked to identitfy the composition of the top atomic layer, the network
returned a result of 30.685% nickel, in close agreement with the expected result of 30%.
The full results, shown in Table 4.8, show that the network was also able to recognize
the compositions of all three top atomic layers for the training data as well as for the
C, = 30% nickel case.

A similar test was performed in which only the second layer composition was varied.
The structures shown in Table 4.9 were used to train the network in which the second
layer composition varied between 50 and 100% Ni. Once training was complete, each of
the individual spectra was shown to the network, and the network asked to identify the
compositions in each of the top three atomic layers. As shown in Table 4.9, the network
was able to successfully recognize the second layer compositions to within a few tenths
of a percent error.

As had been done with the top layer compositions, the network was then trained
on five of these six structures, with the 30-80-50 %Ni structure having been left out.
After training the network for 2000 epochs, it was shown all six structures (including
the one on which it had not been trained) and asked to identify the compositions of all
three top atomic layers. The results are shown in Table 4.10, and show that the network

was successfully able to identify the compositions of all atomic layers for all structures,



Training data (%Ni)

Network results (7%Ni)

Cy Gy Cy Cy )y Cl
0 80 50 0.980522  79.996605 50.000000
10 80 50 9.195305 79.997948 50.000000
20 80 50 19.588572 80.008736 50.000004
x 30 80 50 30.685244 80.013229 50.000004
40 80 50 41.000332 80.006714 50.000000
50 80 50 49427132 79.991333 50.000000

78

Table 4.8: Network recognition of NiggPdso(100) -V curves for six different top layer

compositions, having trained on five.

The network was trained on all of the structures shown except for the C; = 30% Ni
case (indicated by a *). The network was then shown each structure individually and
asked to identify the composition (%Ni) in each layer. Note that the network was able to
successfully determine the compositions of all three layers for the case on which it was
not trained. Training was for 2000 epochs.

Training data (%Ni)

Nctwork results (%Ni)

Ci Gy Cy Ci & Cy

30 50 50 30.017166 49.524879 50.000000
30 60 50 30.007994 59.604801 50.000004
30 70 50 30.001333  70.462921 50.000004
30 80 50 29.996197 81.179176  50.000000
30 90 50 29.992945 90.609215 50.000000
30 100 50 29.989897 98.050400 49.999996

Table 4.9: Network recognition of NisqPdso(100) I-V curves for six different second layer

compositions.

The network was trained on all of the structures shown, and was then shown each structure
individually and asked to identify the composition (%Ni1) in each layer. Training was for

2000 epochs.



Training data (%Ni) Network results (%Ni1)

C, Gy Cs & Cy Cs

30 50 50 30.007107 49.687546 50.000004

30 60 50 29.995325 59.719913 50.000011

30 70 50 29.990582 70.631752 50.000011
* 30 80 50 29.991577 81.477409 50.000004

30 90 50 29.998667 91.037216 49.999996

30 100 50 30.008482 98.556068 49.999985

79

Table 4.10: Network recognition of NisgPd5o(100) 7-V curves for six different second
layer compositions, having trained on five.

The network was trained on all of the structures shown except for the C, = 80% Ni
case (indicated by a *). The network was then shown each structure individually and
asked to identify the composition (%Ni1) in each layer. Note that the network was able to
successfully determine the compositions of all three layers for the case on which it was
not trained. Training was for 2000 epochs.

including the one that was not included in the training data.

Having demonstrated the network’s ability to recognize individual surface parameters
in a small number calculated 7-V curves, the network was next trained on a larger set of
180 /-V curves, in which the compositions of the top three atomic layers were varied over
a wide range (0-50% nickel in the top layer, 50-100% nickel in the second layer, and
30-70% nickel in the third layer, in steps of 10% in each case). The interlayer spacings
for the calculated data were held constant at the bulk interlayer spacing of 1.87 A for
all layers. After the network was trained for 5000 epochs, it was shown 10 I-V curves
(chosen at random) of the 180 curves on which it was trained. The results are shown in
Table 4.11, and demonstrate the network’s ability to recognize the compositions of the

top three atomic layers when all are varied. These results also demonstrate the network’s



Training data (%Ni) Network results (%Ni)

C, Cy Cs C Cy Cy

0 50 60 2.736262 49.857075 58.018745
0 70 70 1.986709 69.535530 70.334732
0 80 30 1.954359  80.403419 28.389162
10 70 70 9.009162 69.811073 71.389969
20 70 70 18.361916 69.959427 71.137978
20 80 60 18.194620 80.903564 61.544018
30 90 40 29.218269 90.235481 39.805630
50 90 40 50.813473 89.646935 39.306042
50 90 60 51.199688 89.840271 57.853497
50 100 60 51.065525 97.106239 58.734566

30

Table 4.11: Network recognition of NisoPd;o(100) [-V curves for 180 combinations of
compositions in the top three atomic layers.
The network was trained on data with C; =0-50%Ni, 'y, =50-100%Ni, and C5 =30-
70%Ni, at intervals of 10%. Shown here are the network results after being shown 10
of these 180 structures, chosen at random. Interlayer spacings were held constant at the

bulk value of 1.87 A, and training was for 5000 epochs.

ability to use a larger training data set.

4.4 Tests of Data Set Reduction

4.4.1 Reduction of Number of Training Structures

Some of the early work in training the network required 100,000 training epochs and
sometimes over one week of computer time. In an attempt to reduce the amount of

training time required, the next phase of the network testing involved investigating various



Expected Network

Results (%Ni) Results (%Ni)
C Cy & C, Cy Cy
20.00 80.00 50.00 | 20.45 82.33 50.29
* 0.00 7000 50.00| 0.0l 70.00 50.00
0.00 50.00 3000 | -1.11 37.19 28.15
*  50.00 70.00 50.00 | 50.00 69.99 50.02
50.00 100.00 70.00 [ 45.46 92.03 65.80
50.00  50.00 50.00 | 51.68 55.01 51.85
20.00 100.00 30.00 | 20.23 102.86 27.89
20.00 100.00 40.00 | 19.87 103.89 38.76
20.00  70.00 60.00 | 19.64 6947 60.41

Table 4.12: Network test results after training on 15 selected structures.

(* indicates structures included in the training set.)

ways in which the training time might be reduced. One such strategy was to reduce
the total number of structures being used to train the network. since the network had

previously demonstrated the ability to “interpolate” between structures on which it had

81

been trained. From the total set of 180 calculated structures, 15 structures covering a

wide range of compositions in each layer were chosen for training the network. Once

the network was trained, it was shown several of the structures from the total set of

calculated data, many of which were not used to train the network. The results of this test

are shown in Table 4.12. For the structures tested, the table shows that the network found

the surface layer compositions with root-mean-square errors of 1.67% for the top-layer

composition C}, 5.60% for the second-layer composition C,, and 1.85% for the third-layer

composition C'y.



82

Another attempt at reducing the number of structures in the training data involved
selecting every fifth structure out of the total set of 180 calculated structures. After
the network was trained on this data set, the tests showed that the network was unable
to correctly identify the compositions of the third atomic layer. The reason for this
quickly became clear: by choosing every fifth structure from the total set, the training set
coincidentally consisted of stuctures which all contained 30% nickel in the third atomic
layer. Consequently, once the network was trained, it always returned a result of 30%
nickel for the third atomic layer. This experience emphasized the importance of ensuring
that the training data is carefully chosen to adquately sample the parameter space being
studied. If one imagines a three-dimensional space with axes corresponding to each of
the atomic layer compositions €, C'y, and CY, then the total set of calculated data may be
pictured as a 6 x 6 x 5 lattice of points in that space. In choosing the data to use for the
training set, one must be careful to properly sample this parameter space. Choosing every
fifth structure in the parameter space corresponds to selecting a single plane of lattice
points parallel to the C—C, plane with a constant value of 30% nickel for C';.

Subsequent tests of data reduction involved choosing increasingly sparse samples of
the total calculated data set. Training data sets for the network were created using every
seventh of the 180 structures in the total data set, for a total of 26 structures. Once testing
showed that this was satisfactory, another training set was created using every 17th of
the 180 total structures, for a total of just |1 structures in the training set, or just 6% of
the total data set. At this time the LEEDNET program was upgraded to perform a more
thorough test after the network was trained: after training, the network was shown each
of the 180 structures in the total training set, and LEEDNET reported statistics on the

minimum, maximum, and root-mean-square errors for each atomic layer. The results are



83

Layer Min. Error (%) Max. Error (%) RMS Error (%)

C, 0.000 3.776 0.281
Cy 0.000 6.373 0.266
Cs 0.000 14.505 0.621

Table 4.13: Network test results after training on every [7th structure.

shown in Table 4.13.

4.4.2 Reduction of Number of Points Per Training Structure

Having tested the network’s ability to identify surface compositions from a relatively small
number of training structures, the next phase of network testing was to attempt to reduce
the number of data points in each /-V curve. The calculated -V curves contain data for
four separate beams, with 160 data points at 2 eV intervals in each beam, for a total of
640 points for cach curve. To test the network’s ability to recognize [-V curves with
fewer data points in cach curve, the network was trained with training data at intervals of
4 eV and larger, as shown in Table 4.14. The training data for the results shown in the
table are for every 17th structure of the total of [80 structures in the calculated data set,
as was done for Table 4.13. The errors shown in the table have been computed from the

errors found by showing the network all 180 structures in the original data set.



84

C, Errors(%) | Cy Errors(%) | C45 Errors(%)
Step(eV) | Max RMS | Max RMS | Max RMS

2 3776 1.063 | 6.373 2302 | 14505 4.181
4 5.529 1727 | 8735 3.101 | 16.673 4.451
6 4290 1.396 | 6.358 2711 | 16.113 4.227
8 27792 0987 | 8.859 3.348 | 16.847 4.827

10 6.317 1.779 | 13.094 3.905 | 13.451 4.044
12 3917 1.216 | 5266 1.923 | 14.878 4.448
14 3.545 0739 | 4561 2.038 | 16.160 4.653
16 4636 1386 | 6.669 2.678 | 11.573 3.166
18 7.622  2.080 | 13.388 3.904 | 19.930 4.789
20 2.558 0.770 | 8.539 2.421 | 16.133 3.892
24 4494 1.145| 6.736  3.139 | 18.033 5.135
30 3.126  0.832 | 8318 2.774 | 15.617 4.560
34 7.844 1947 | 5738 1915 | 14392 4.621
40 6.120 2.092 | 15.048 3.642 | 8907 2.623
50 4.788 1.366 | 7.707 1.864 | 25.251 6.936
60 3911 1.168 | 5.342 1.681 | 12.492 3.295
70 4.881 0995 10.278 2.619 | 14.322 3.367
80 12.869 3.298 | 27.639 6.365 | 26.633 6.265
100 9.442  3.125 | 7.851 27788 | 18.439 5.0606

Table 4.14: Network test results for reducing number of points in training sets.
All results are for a training set containing every [7th structure of the total calculated
data set.



85

4.5 Conclusions

It has been shown that a backpropagation artificial neural network can successfully identify
dynamically calculated LEED -V spectra for NiggPdsq(100). The network has been
shown to be able to identify not only spectra on which it was trained, but can also
“interpolate” between the training data and identify spectra on which it was not trained.
In has, in fact, demonstrated its ability to identify a wide range of surface compositions
when trained on only ~ 10% of the structures on which it was tested.

The network was also shown to work successfully when the 7-V data was sampled at
even very large intervals, demonstrating the network’s ability to identity /-V" spectra even

with a minimum amount of training data.



Chapter 5

Application of Artificial Neural
Networks to Low-Energy Electron
Diffraction

“Veniet tempus quo ista quae nunc latent in lucem dies extrahat et longioris aevi dili-
gentia.”

— Seneca, Naturales quaestiones, VII, xxv, 4

5.1 Introduction

HAVING demonstrated the ability of an artificial neural network to recognize dynam-
ically calculated LEED I-V spectra, the next phase of this Dissertation was to test the
ability of the network to recognize structural parameters in experimental I-V spectra. For
this next phase, LEED I-V spectra were calculated for NisoPdsg, and these spectra were

used to train the neural network. Once trained, the network was shown the experimental

86



87

I-V curves and asked to identify the compositions (percentage nickel) in the top atomic
layer, in much the same way that it had been asked to determine compositions from
theoretical data in the previous chapter. The results were compared to the results of a
conventional exhaustive search to show that the network was able to successfully identify

surface structure parameters in experimental /-1 data.

5.2 Description of Experimental Sample

The experimental /-V curves used for this study were for the (100) surface of a NisoPds
alloy, and were provided by Dr. Gregory Derry of Loyola College in Baltimore, Maryland.
They were available from an earlier study on surface segregation [34]. The sample was a
small disk, I cm in diameter and 1 mm in thickness, cut from a single crystal to expose
the (100) plane. The sample was initially cleaned by polishing with diamond pastes; final
cleaning was performed in an ultra-high vacuum (~ 107! torr) by repeated cycles of
sputtering with a beam of argon ions. An annealing procedure was performed between
sputtering cycles to repair the surface damage done by sputtering. Once all measurable
impurities were removed from the sample (as determined by Auger electron spectroscopy),
a final annealing procedure was performed and the sample was allowed to return to room
temperature before performing the LEED experiment.

To generate the LEED data, low-energy electrons with energies from 50 eV to 320 eV
were incident upon the cleaned NisoPds (100) surface in ultra-high vacuum. Data were
collected at several incidence angles, and for several different diffracted beams. For this
neural network study, only a subset of this data was used: the I-V data for the (10),

(11), and (20) beams diffracted from normally incident electrons. The data for each



88

beam are averaged over several separate experiments and over symmetrically equivalent
beams. The averaged local background intensity was subtracted from the data by the
data acquisition equipment. The final data used for this work was also corrected for the
instrument response function, and was normalized so that the maximum intensity for each
beam is set to unity. The final data consists of this normalized intensity data for energies

from 50 eV to 320 eV, in increments of 2 eV.

5.3 Theoretical Calculations

The calculated 7-V spectra used to train the network were generated using standard com-
puter codes [11]. The Renormalized Forward Scattering (RFS) method was used to
perform the dynamical calculations, as described in Chapter 2. In addition, the standard
computer codes were modified to include the averaged ¢-matrix approximation (ATA) to
treat disordered alloy surfaces [34]. In this approximation, the ¢-matrix element that de-
scribes atomic scattering (discussed in Chapter 2) for each atom is taken to be a weighted
average of the ¢-matrices of the elements present, weighted in proportion to the percent

compositions of each element [35]:

t({,m = crtni + (1 —¢r)tpa - (5.1)

Here t£

‘1o 18 the averaged t-matrix for atoms in layer I, whose concentrations are ¢y for

nickel and 1 — ¢; for palladium. The atomic ¢-matrices are ty; for nickel and tpy for
palladium.
NisoPds is a face-centered cubic structure in the bulk, with a lattice constant of

3.74 A. Fig. 5.1 shows the bulk structure in the (100) plane parallel to the surface.



89

As shown in the figure, the nickel-palladium interatomic distance for this structure is
(3.74 A)/+/2 = 2.64 A, and the bulk interlayer spacing is (3.74 A) = 1.87 A. The figure
also shows that the bulk compositions of planes parallel to the (100) plane are 50% Ni
and 50% Pd.

I-V curves were generated for four beams for this structure: (00), (10), (11), and
(20). The calculations assumed an incident electron beam normal to the (100) plane, with
energies ranging from 30 eV to 348 eV. Thermal effects were included for the nickel
atoms only; the palladium atoms, being nearly twice as massive as the nickel atoms, have
only half the thermal energy and were assumed to be stationary during the calculations.
The Debye temperature of the nickel atoms was taken to be its bulk value, 440 K.

Figure 5.2 shows the experimental -V curves used for this Dissertation, along with
the theoretical I-V curves corresponding to the results of the conventional search. As
the structure parameters used in the theoretical calculations are varied, the nature of
the peaks also varies, often in complex ways. As shown in Fig. 5.3, varying the top-
layer compositions (percent nickel) while holding the other parameters constant results in
changes in the peak amplitudes and shapes. Fig. 5.4 shows that varying the interlayer
spacing results in somewhat more complex changes in the peak amplitudes and shapes

along with energy shifts of the peaks as the interlayer spacing Ady, is varied.

5.4 Initial Results

Initial testing of the network with experimental data was aimed at identifying only the
compositions of the first three atomic layers. The interlayer spacings were held constant

at their bulk values of 1.87 A. The training data thus consisted of I-V curves calculated



90

Second layer

Figure 5.1: Bulk termination of NisoPdsp in the (100) plane.
Note that this is a randomly ordered alloy, so that nickel and palladium atoms appear
randomly at each site.



Intensity (Arbitrary Units)

Theoretical and Experimental |-V Curves for Ni,,Pd.,(100)

0.006

— Calculated
0.005 - n ....... Experimental

0.004 ﬂ

0.003

0.002 A

0.001

0.000 -

0 50 100 150 200 250 300 350

Incident Electron Energy Index

Figure 5.2: Experimental and theoretical /-V" spectra for NisoPds50(100).
The data shown are for concatenated (10), (11), and (20) beams.



92

Calculated Nig,Pd.,(100) /V Curves for Several
Top-Layer Compositions

0.035
0.030 -
& 0.025 -
5 LfWAf\“xfxﬁxg__JLr\,QA\fijj?26Ni
S
> 0.020 -
®
2 0015
< : .
% 0.010 -
[
Q
< 0.005
0.000
T T T T T T

0] 100 200 300 400 500 600

Electron Energy Index

Figure 5.3: Theoretical I-V spectra for NisoPdso(100) for several top-layer compositions.
The data shown are for concatenated (10), (11), and (20) beams; the abscissa is an index
indicating the electron energy, which runs from 30 eV to 348 eV for each of the three
beams. Note the decrease in amplitude of the peaks around indicies 25 and 175 as the
top-layer composition becomes nickel-rich, corresponding to energies of roughly 80 eV in
the (10) beam and 60 eV in the (11) beam, respectively. A peak around index 60 (roughly
150 eV in the (10) beam) is seen to increase with increasing nickel content.



93

Calculated Nig,Pd,,(100) /V Curves for Several
Interlayer Spacings

0.035
0.030 ﬂ
o 0.025 -
5 HM .
> 0.020 -
©
2 0015 -
<
= W\bN W-z%
% 0.010 A
[
9
£ 0.005 A
\A/\/\/\\/\f\lJ W %
0.000 -
T T T T T T

0 100 200 300 400 500 600

Electron Energy Index

Figure 5.4: Theoretical I-V spectra for NisoPdso(100) for several interlayer spacings.
The data shown are for concatenated (10), (11), and (20) beams; the abscissa is an
index indicating the electron energy, which runs from 30 eV to 348 eV for each of
the three beams. The changes are more complex than for the case with changing top-
layer compositions shown in the previous figure. Some peaks are shifted, some change
in amplitude or shape, and some undergo all three changes as the interlayer spacing is
changed. Those peaks that are shifted are generally shifted toward slightly lower energies

as Ad;y is increased.



94

for a variety of combinations of compositions in the first three atomic layers, which model
the segregation that takes place in the atomic layers in the surface. But since the interlayer
spacings were held at their bulk values, relaxation of the surface layers was not modeled.

There are several differences between experimental and calculated 7-V data that need
to be allowed for before experimental data can be shown to a network trained on calculated
data. First, the intensities for experimental data will generally not be expressed in the
same units as for the calculated data. Calculated intensities are found from the squared
amplitudes of the diffracted electron wave functions, while measured intensities are mea-
sured in some units that depend on the equipment being used, such as CCD counts. Since
these two sets of intensity units are not casily related to each other, the usual practice is to
express the intensities in arbitrary units and to normalize the diffracted beam intensities
in some way. In the case of the experimental data used for this study, for example, the
I-V data were normalized so that the maximum intensity in each beam is set to unity.

In order to relate the calculated intensities to the experimental intensities, it is necessary
to apply some normalization scheme to both sets of data so that they are scaled to the
same units. One could, for example, multiply the calculated data by a scaling factor
so that the maximum intensity of each beam is set to unity; it could then be directly
related to the experimental data. Because of uncertainties in the absolute values of the
peak heights, however, this method was not deemed to be the best approach. Also,
applying such adjustments to the calculated data would require re-training the network
for each experiment, so it was considered best to apply all adjustments to the experimental
data. To adjust the experimental intensities to the same scale as the calculated intensities,

the experimental intensity data were normalized so that the integral under the 7-V curve



95

between two fixed energies for both sets of data are equal:

gy gy
Inxperimental (E) dE - Icalcula,t,cd (E) dE (5 2)

This has the effect of requiring the mean intensity of both data sets to be equal. For this
work, a trapezoidal rule integrator was used to find the integrals of the calculated and
experimental /-V curves; the experimental intensities were then multiplied by the ratio of
these integrals to set them to the same scale as the calculated intensities.

A second issue must be addressed before experimental /-V curves can be used with
a neural network: since each of the network’s input nodes represents the intensity at a
specific incident electron energy, the experimental data must be interpolated to the same
energy points as those used in the training data. For this study, the experimental data was
interpolated to the energy values used in the calculated data using a cubic spline.

A third issue that must be addressed before comparing experimental and theoretical
I-V spectra is that the experimental data will generally include an inner potential energy
shift which is not included in the calculated data. Physically, the inner potential is due
to dipole layers at the material surface, which have the effect of accelerating the incident
electrons to a higher kinetic energy as they enter the surface from the vacuum. As a
result, the 7-V curves, being plotted against the energy of the electrons emerging from
the electron gun, are shifted as a result of this inner potential [6, 11]. The magnitude of
this shift is difficult to calculate since the value of the inner potential is often unknown,
and the absolute energy of the calculation can be uncertain (depending of the value of
the muffin tin zero). In practice, one often corrects for this effect by simply shifting the
energy scale of the calculated data so that its peaks align with the experimental peaks

[6], or it is treated as an additional non-structural parameter to be fit during the structure



96

search.

For this phase of the neural network study, the object was to study only the network’s
ability to recognize atomic layer compositions; the network’s ability to determine the
inner potential energy shift was not of immediate interest. To this end, a theoretical
I-V spectrum was calculated using the best fit compositions and inner layers spacings
that had been previously determined using an exhaustive global search [34]. The inner
potential energy shift was then determined by shifting the experimental data in steps of
2 eV until the peaks in the two data sets were aligned. This gave an energy shift of —6 eV
(i.e. the experimental data should be shifted 6 eV toward lower energy with respect to the
calculated data to align the peaks in the two data sets). This value was used to eliminate
the energy shift issue from the problem for this first phase of tests with experimental data.

With the inner potential energy shift determined and the interlayer spacings set at their
bulk values, a set of I-V spectra was calculated in which only the layer compositions
were varied: 0-50% Ni in the top layer, S0-100% Ni in the second layer, and 30-70%
Ni in the third layer, all in increments of 10%. This resulted in 6 x 6 x 5 = 180 separate
sets of /-V spectra to be used for training the network. Once trained on these spectra, the
network was shown the experimental spectrum, corrected for the difference in intensity
scale and inner potential energy shift. The results are shown in Table 5.1. Comparing the
network results with the error ranges for the target values shows a marginal agreement

between the network results and the results found by a conventional exhaustive search.



97

Compositions(%Ni) | Errors(%)
Layer | Target Network | Max RMS
| 20+ 11 38.75 210 0.77
10019, 9295 | 415 145
34414 48.73 720 2.19

W N

Table 5.1: Network test results for network shown experimental 7-V data.
The network was trained on calculated data assuming bulk interlayer spacings. Training
data was for 0-50% Ni in the top layer, 50-100% Ni in the second layer, and 30-70%
Ni in the third layer, in increments of 10%. Target compositions are from Ref. [34].

5.5 Correction for Interlayer Spacings

The results shown in Table 5.1 are only marginally in agreement with the results found
by a conventional exhaustive search. One reason the results were not in better agreement
with conventional results is that relaxation of the surface atoms was not modeled in the
training data; instead, the interlayer spacings were all assumed to have the bulk value of
1.87 A. A first step toward improving these results, therefore, was to generate new training
data from calculations that include the correct interlayer spacings. Since this phase of
the testing sought only to identify the correct layer compositions, this new set of training
data was calculated using the interlayer spacings near the values that had been determined
using a conventional exhaustive search: 1.8326 A (bulk spacing minus 2%) between the
first and second atomic layers, and 1.7952 A (bulk spacing minus 4%) between the second
and third atomic layers. Interlayer spacings for all deeper layers were taken to be their
bulk value of 1.87 A.

The training data generated for this test was for varying compositions in the first three



98

Compositions(%N1)
Layer | Target Network
1 20 £ 11 22.01
1007,  102.27

34+ 14 4278

[SS RN o)

Table 5.2: Network test results for network shown experimental /-1 data, corrected for
interlayer spacings.

The network was trained on calculated data assuming “correct” interlayer spacings. Train-
ing data was for 0-20% Ni in the top layer, 90-100% Ni in the second layer, and 25-50%
Ni in the third layer, in increments of 5%. Target compositions are from Ref. [34].

atomic layers: 0-20% Ni in the top layer, 90-100% Ni in the second layer, and 25-50%
Ni in the third layer, in increments of 5%, for a total of 90 training structures. The same
—6 eV energy shift was applied to the experimental data as was done for the previous test,
and the experimental data was normalized as before by scaling the experimental intensities
so that the integrals under the experimental and calculated curves were equal. The results
are shown in Table 5.2, and show much better agreement with the results obtained by
an exhaustive search. This improvement may be attributed to (1) allowance being made
for surface relaxation; (2) the smaller range over which the compositions were allowed to
vary; and (3) the smaller increment over which the compositions in the training set were

allowed to vary (5% Ni instead of 10%).



99

5.6 Test with Wider Training Range and Fewer Examples

The next test of the network incorporated several improvements: (1) the range of com-
positions was widened and increment increased to produce a more useful test; (2) the
number of training structures was reduced from 90 to 11 in order to reduce the amount of
time required to train the network; and (3) the training data was calculated using interlayer
spacings that were closer to the values found by the conventional search.

The interlayer spacings for this test were taken to be 1.8363 A (bulk spacing minus
1.8%) between the first and second atomic layers, and 1.7933 A (bulk spacing minus
4.1%) between the second and third layers; these are the values that had been determined
by a previous study on surface segregation [34]. [-V curves were calculated for this
structure for compositions of 0-50% Ni in the first atomic layer, 50-100% Ni in the
second layer, and 30-70% Ni in the third layer, all at intervals of 10%. Just 11 of these
spectra were selected for training the network. After 250,000 training epochs, the network
converged to the values shown in Table 5.3. Convergence of the network in this case
required that the adapative learning rate be disabled and replaced with a constant learning
rate.

Although these results are within the error bars of the conventional search method,
the results obtained thus far were fraught with numerous difficulties. First, the network
required 250,000 training epochs before it was adequately trained, requiring several days
of computer time on a fast mainframe computer. This is in spite of having used only 11
different spectra to train the network.

Second, it was unclear when exactly the training should be stopped, as seen from

the error plots of Figs. (5.5) and (5.6). Large oscillations in the training error (Fig. 5.5)



100

Compositions(%Ni)
Layer | Target Network
1 20+ 11 29.05
10079, 97.49

34+14 4247

(USHN \9)

Table 5.3: Network test results for network shown experimental 7-V data, using reduced
training set.

The network was trained on calculated data assuming “correct” interlayer spacings. Train-
ing data was for 11 selected structures in the range 0-50% Ni in the top layer, 50—100%
Ni in the second layer, and 30-70% Ni in the third layer. Target compositions are from
Ref. [34].

3

make it difficult to determine when the network weights have converged. Also, small
differences in the choice of when to stop network training can result in large differences
in the independent test error, as seen from the erratic nature of the independent test error
plot (Fig. 5.6).

A third difficulty with this result is that several aspects of the problem required know-
ing the “answer” (determined by a conventional search) ahead of time. In particular, the
experimental [-V curve was scaled to the same intensity scale as the calculated curve by
requiring the integrals under the experimental and calculated curves to be equal. However,
this required knowing which calculated curve to integrate. Furthermore, the energy shift
calculation required aligning the peaks in the /-V curve for the experimental data with
the peaks in the calculated curve for the known “correct” structure.

Lastly, while the results were within the error bars for the conventional calculation, it

would be desirable for the network to return results that match the conventional results



Training Error

101

Training Error for Ni,,Pd,,(100)

0.009

0.008

|

0.007

0.006

0.005

0.004

0.003

0.002

0.001 T T T T ¥ 7
0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5

Epochs

Figure 5.5: Network training error for NisoPds(100) vs. number of training epochs.



102

Independent Test Error for Ni,,Pd.,(100)

18

—

16

14 -

12 4

10 -

Independent Test Error

6 T 1 f T T T T
0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5

Epochs

Figure 5.6: Network independent test error for NigoPdso(100) vs. number of training
epochs.



103

more closely.

5.7 The Pendry Y -function

In order to facilite the network’s recognition of /-V spectra, some means was sought to
improve the network’s convergence, and to process the experimental data without knowing
the conventional result ahead of time. To address many of these difficulties, the author
decided to train the network using the Pendry Y -function of the dynamically calculated
[-V spectra, rather than using the /-V spectra themselves. Pendry has defined the function

Y(FE) by [14]

Lt
Y(F) = ——— 53
where L(F) is the logarithmic derivative of the 7-V spectrum,
L(E)=1'/T (5.4)

and V{y is the electron self-energy, which is around —4 eV for most materials at electron
energies above about 30 eV. Pendry designed this function to emphasize the physically
important components of the /-V spectrum (such as the positions of the peaks), while
tending to suppress features of that are physically less important, such as the absolute
magnitudes of the intensities. The form of the function L(FE) given by Eq. (5.4) makes L
insensitive to amplitudes for widely spaced peaks, but gives too high emphasis to zeros
of I(E). The form of Y(F) given by Eq. (5.3) solves this problem by giving similar
emphasis to zeros and peaks in Y (FE). This Y-function is commonly used to calculate
the Pendry R-factor, a widely used measure of the correlation between calculated and

experimental /-V spectra.



104

Using Y (F) rather than I(E) to train the network results in a much faster training
time and more reliable results than using the 7-V spectra directly, since the network may
more readily recognize the physically important features of the network. Using Y (E)
also solves the normalization problems associated with using the I-V curves [(F). Using
I(E) required knowing the “correct” -V curve ahead of time in order to properly scale
the intensities of the experimental data. The intensity units cancel in Eq. (5.4), and Y (E)
has units of eV~!. Thus no normalization of the experimental data is needed when using
Y (E), and no foreknowledge of the results of the conventional search is required to scale
the data.

Examination of the experimental data reveals the presence of many spikes in the data
due to noise, which can lead to large fluctuations in the derivative I’. For that reason,
both the experimental and calculated /-V data are first smoothed before the derivative is

calculated, using a three-point moving average:
]sm()()t.hn(l(E'i,) - L; [](E'L'Al) + ](EI) + ](E1+1)] . (55)

The Y -function of both the calculated and experimental data is then calculated using
Eqgs. (5.4) and (5.3) with this smoothed /-V data. The calculated Y (F) data was then
used to train the network, with greatly improved results. Figure 5.7 shows the training
error vs. training epoch. Comparing with the previous results of Fig. 5.5 using /-V data
shows that using Y'(E) for training improves the convergence speed by a factor of 500,

and also results in much smoother convergence.



105

Training Error for Ni,,Pd,(100) Using Pendry Y-function

2.5e-5

L

2.0e-5

1.5e-5

1.0e-5

I}

Training Error

5.0e-6

0.0 -

T T T T T T

0 5e+4 1e+5 2e+5 2e+5 3e+5 3e+5

Epochs

Figure 5.7: Network training error for NisoPdso(100) vs. number of training epochs, using
Y(FE).



106

5.8 Inner Potential Energy Shift

In order to enter the experimental data into the trained network, it is still necessary to
allow for the inner potential energy shift, and to interpolate the experimental data to the
same energy points as the calculated data. The inner potential energy shift was determined
by shifting the experimental data with respect to the calculated data along the energy axis
in steps of 0.1 eV, interpolating the experimental data at the new energy points using a
cubic spline, and calculating the root-mean-square error between the Y -function of the
shifted experimental data and the Y-function of the “correct” I-V spectrum found from
a conventional exhaustive scarch. This calculation yielded a value of —4.7 eV for the
energy shift (i.e. the experimental data should be shifted 4.7 eV toward lower energy with

respect to the calculated data to align the peaks in the two data sets).

5.9 Testing With the Y -function

In order the test the network’s ability to recognize [-V spectra using Y -functions, training
data was generated consisting of the calculated /-V spectra of a wide range of possible
compositions: 0-50% N1 in the top atomic layer, 50-100% Ni in the second layer, and
30-70% Ni in the third layer, at intervals of 10%, for a total of 180 different combinations
of compositions. The I-V spectra for each of these surface compositions was shown to
the network for 2000 training epochs before network training was stopped.

Once the network was trained, the experimental data was corrected for the inner poten-
tial energy shift and interpolated to the same energy points as those used in the calculated

data to train the network. The shifted and interpolated experimental data was then stored



107

Compositions(%Ni)
Layer | Target Network
I 20+ 11 12.51
10075, 98.00

34+14 3643

[FSIN W)

Table 5.4: Network test results for network shown Y '-function of experimental [-V data.
The network was trained on calculated data assuming “correct” interlayer spacings. Train-
ing data was for 180 structures in the range 0-50% Ni in the top layer, 50—-100% Ni in the
second layer, and 30-70% Ni in the third layer. Target compositions are from Ref. [34].

into the input nodes of the trained network and the network was run. The resulting output,
shown in Table 5.4, shows that the network was able to identify the compositions of the
surface layers to within the errors stated for the conventional calculation [34], with greatly
improved results over the previous attempt to use the -V data alone.

The results shown in in Table 5.4 using the Pendry Y-function are a significant
improvement over previous results using 7-V spectra directly, particularly with regard to
the speed and smoothness of convergence of the network. The results demonstrate the
network’s ability to identify the surface layer compositions when the interlayer spacings
and inner potential energy shift are known. The next phase of network development was
to eliminate the requirement of a foreknowledge of these parameters, so that the surface
compositions and interlayer spacings could be determined without knowing any of the

results of a conventional search.



Chapter 6

LEED Surface Structure Determination
Using Artificial Neural Networks

\ 7 N M ’ N ¢ ’ 7’ ’ K4 < o
kol yrwoeale Ty adifewar, ral n anfera edevlepwoel vpag.

—John 8:32

IN the previous chapter, it was shown that a backpropagation artificial neural network
was able to successfully identify the compositions of the first three atomic layers of the
(100) surface of a crystal of NiggPdsq alloy from its /-V spectrum. This required, however,
network training data that was generated using the interlayer spacings that were known
éhead of time. It also required knowing the correct compositions and interlayer spacings
ahead of time in order to determine the inner potential energy shift.

This chapter will describe the final phase of this Dissertation: testing the ability of
the neural network to identify all surface structure parameters (three layer compositions
and two interlayer spacings) without a foreknowledge of the results of a conventional

exhaustive search. Furthermore, the results in the previous chapter involved training the

108



109

network with layer compositions that varied over a limited range; this chapter will discuss
an improvement in which the network is trained on structures whose layer compositions
vary over the full range 0-100% Ni, and whose interlayer spacings span a wider range

than before.

6.1 Determination of Interlayer Spacings

As a first step toward this goal, the the neural network was tested for its ability to recognize
the interlayer spacings alone, with the atomic layer compositions held constant at their
known values (as determined by a conventional search). Training data was generated from
LEED dynamical calculations, setting the compositions of the first three atomic layers to
their “known” values as determined by a conventional search [34]: 20% Ni in the top
layer, 100% Ni in the second layer, and 34% Ni in the third layer. The interlayer spacings
were allowed to vary over the range of —7% to +2% of the bulk spacing of 1.87 A, in
increments of 1%, for a total of 100 training structures. As was done in the previous
chapter, the Pendry Y-function of the /-V curves was used to train the network, rather
than the /-V curves themselves.

The network quickly converged on this calculated data after 100 training epochs. The
trained network was then shown the Y -function of the experimental /-V curve, including
a —4.7 eV inner potential energy shift that had been determined by comparison with the
conventional results. Table 6.1 shows the network results, which are seen to be well

within the error bars of the conventional search.



110

Conventional Results Network Results

Layer % A % A
dip | —1.8+£1.2 1.836+0.022 | —1.68 1.83%6
dys | —4.1+1.8 1.793 +0.032 ’ —3.59  1.8028

Table 6.1: Network test results for determination of interlayer spacings.
The search range for both interlayer spacings was —7% to +3%.

6.2 Determination of Compositions Over the Full Train-
ing Range

Having verified the network’s ability to successfully determine interlayer spacings after
having been trained on a relatively wide range of spacings, the next step toward improving
the network was to test its ability to identify the layer compositions after training the
network over the full range of possible compositions. In the previous chapter, it was
shown that the network was able to correctly identify the compositions of the top three
atomic layers of the NisoPd5,(100) surface after training the network on a moderately wide
range of possible compositions. To further test the network’s ability to identify surface
layer compositions, a set of network training data was created using the full range of
possible compositions: 0-100% Ni in each of the top three atomic layers. The results of
the training after 10,000 epochs are shown in Table 6.2. The interlayer spacings in this
case were held constant at the values determined by a conventional exhaustive search:
—1.8% of bulk between the first and second layers, and —4.1% of bulk between the

second and third layer.



111

Training | Training Results
Parameter | Range | Interval | Expected Network
C1 (%N1) | 0 100 10 20+ 11 17.03
Cy (%Ni) [0 100 10 10019,  91.34
Cs5 (%N1) | 0 100 10 34+ 14 20.98

Table 6.2: Network test results for determination of atomic layer compositions (full range
of training data).

The experimental data was corrected for the —4.7 eV inner potential energy shift, and
the training data consisted of 666 structures (every second structure of the 11* = 1331
combinations of compositions). The network was trained for 10,000 epochs.

6.3 Simultaneous Determination of Compositions and In-
terlayer Spacings

The next phase of development of the neural network was to test its ability to simulta-
neously recognize both surface compositions and interlayer spacings. Since this involves
varying three composition parameters and two interlayer spacings, this creates a much
more stringent test for the network than the previous tests. To approach this problem,
an initial test checked the network’s ability to identify all five structure parameters for
theoretically calculated data. This was followed by a test in which the calculated data
was replaced by experimental data, and the network was trained over a restricted search
range. The final test used experimental data with the network trained over a full search

range.



112

Training | Training Results
Parameter | Range Interval | Expected Network
C, (%N1) | 0 100 20 20+ 11 18.98
Cy (%Ni) | 0 100 20 100%9, 100.30
Cs5 (%Ni) | O 100 20 34+ 14 34.70
Adyy (%) | =7 43 2 —1.8+1.2 —2.05
Adys (%) | =7 +3 2 -4.1+1.8 —4.07

Table 6.3: Network test results for simultaneous determination of compositions and in-
terlayer spacings, with network shown calculated data.
The training data consisted of 7776 structures, and training was for 10,000 epochs.

6.3.1 Calculated Data

For this test, standard computer codes [11] were used to generate dynamically calculated
[-V spectra for the (10), (11), and (20) beams diffracted from Nis,Pds,(100) for a wide
range of structures: compositions of 0—100% Ni in the top three atomic layers and in-
terlayer spacings of —7% to +3% of the bulk spacing of 1.87 A. These spectra were
then used to train the network for 10,000 training epochs. The same computer codes were
used to generate /-V spectra for the structure found by a conventional search (C,=20% Ni,
Cy=100% Ni, C2,=34% Ni, Ad;» = —1.8%, Adss — —4.1%) and this data was shown
to the trained network. The network successfully determined all five of the structure
parameters to well within the error bars, as shown in Table 6.3.

As with other network runs described in this chapter, the network was trained on the
Pendry Y -function of the /-V curves, rather than on the /-V curves themselves, because

of the improvement in network performance described in Chapter 5.



113

In order for the network to simultaneously identify both the layer compositions and
interlayer spacings, the network software had to be modified for this case so that scaling
of the outputs from the network (Section 3.5) could be performed separately for each
output, rather than having a single set of scaling parameters for all network outputs.
This is because the “true” (unscaled) network outputs may range from 0-100 (%) for the
layer compositions, while the interlayer spacings only range from a few percent around
1.87 (A). Scaling each output separately allows for the differences in units for each output
and allows the network to treat each output on an equal footing. The scaled outputs range

between 0 and 1, regardless of the range or units of the unscaled outputs.

6.3.2 Experimental Data (Restricted Range)

For the next test, a set of training data was calculated in which the top three layer
compositions and top two interlayer spacings were all varied over the restricted ranges
shown in Table 6.4. As shown by the table, the network was able to successtfully recognize
all five search parameters to well within the conventional error bars in this case as well.
The experimental data was shifted —4.7 eV (toward lower energies) in this case to allow

for the inner potential.

6.3.3 Experimental Data (Full Range)

The final step in evaluating the network’s ability to simultaneously recognize all five
search parameters was to expand the range of the data used to train the network. In
this case, the network was trained using layer compositions of 0—-100% Ni (in steps of

20%) for all three surface layers, and the interlayer spacings Ad were searched from



114

Training | Training Results
Parameter | Range Interval | Expected  Network
Cy (%Ni) | 0 50 10 20+ 11 12.13
Cy (%Ni) | 70 100 15 10019, 95.60
Cs (%Ni) | 30 60 15 34+ 14 35.85
Adyy (%) | =3 —1 1 -18+12 —-1.61
Ados (%) | =5 =3 1 —-41+18 —-3.97

Table 6.4: Network test results for simultaneous determination of compositions and in-
terlayer spacings (restricted range of training data).

The experimental data was corrected for the —4.7 eV inner potential energy shift, and the
training data consisted of 486 structures.

—7% to +3% of the bulk layer spacing in steps of 2%. Larger intervals were used for the
calculated data (20% for compositions and 2% for interlayer spacings) than had been used
previously in order to keep the number of calculated structures in the network training data
to a reasonable number. The initial results, shown in Table 6.5, show that the network
was able to identify four of the five search parameters to well within the conventional
error bars. The network was not, however, initially able to correctly identify the top layer
composition C'; to within the error bars of the conventional exhaustive search in this case.

It was first thought that the network’s inability to correctly identify the top layer
spacing might be due to the large intervals in different values of C| used in the training
data: the network had only been trained on examples that showed 0, 20, 40, 60, 80, and
100% Ni in the top atomic layer. Because changes in the top layer should have a larger
effect on [-V data than deeper layers due to the surface sensitivity of LEED, these large

intervals may result in changes in the /-V curve that are too large for the network to be



115

Training | Training Results
Parameter | Range Interval | Expected Network
Ci (%Ni) | 0 100 20 20+ 11 -0.34
Cy (%Ni) [ 0 100 20 10075, 88.25
Cs (%Ni) | 0 100 20 34+ 14 33.84
Adyy (%) | =7  +3 2 -18+12 —-1.89
Adps (%) | =7  +3 2 -41+18 —4.44

Table 6.5: Initial network test results for simultaneous determination of compositions and
interlayer spacings (full range of training data).

The experimental data was corrected for the —4.7 eV inner potential energy shift. The
training data consisted of 341 calculated structures, each of which had an average com-
position of 40-60% Ni for the top three atomic layers.

able to successfully “interpolate” between them. With this in mind, a new set of training
data was created in which the top layer composition was varied at intervals of 10% instead
of 20%. 1t was discovered, however, that this change had no appreciable effect on the
network’s ability to correctly recognize the top layer composition ).

The difficulty with the network’s ability to identify the top layer composition was
ultimately traced to the network learning rate parameter ¢, which is the factor by which
changes to network weights are multiplied when the weight updates change sign from
epoch to epoch (Eq. 3.41). The value of ¢ had previously been set to 0.5, which causes
the changes to the network weights to decrease rapidly (and thus increase convergence
speed) for a wide variety of problems [32]. In this case, however, it caused the network
weights to converge too quickly, so that the weights converged to a local minimum in the

error surface for the problem, rather than the global minimum.



116

Training | Training Results
Parameter | Range | Interval | Expected Network
Cy (%Ni)y | 0 100 20 20+ 11 28.51
Cy (%Ni) | 0 100 20 10049, 83.78
C5 (%N1) | 0 100 20 34+ 14 40.41
Adyy (%) | =7 +3 2 -18+12 —3.93

Table 6.6: Improved network test results for simultaneous determination of compositions
and interlayer spacings with ¢ = 0.85 (full range of training data).

The experimental data was corrected for the —4.7 eV inner potential energy shift. The
training data consisted of 7776 calculated structures, and the learning rate parameter ¢
was set to 0.85. Results are shown at 4700 training epochs.

In order to slow the network convergence to allow it to find the global error minimum,
the learning rate parameter ¢ was increased to 0.85 and it was re-trained with the same
I-V spectra covering the same wide range of compositions and interlayer spacings. Upon
being shown the experimental spectra, the network was this time able to correctly identify
the five surface structure parameters, as shown in Table 6.6.

The interlayer spacings found by the network in Table 6.6 show an interesting feature:
although the results are close to the conventional search error bars, they are much closer
to conventional search results for the other layer. In other words, the network’s result for
Ady is close to the conventional result for Adys, and the network’s result for Adsg is
close to the conventional result for Ady,. This is, in part, an artifact of the way in which
the interlayer spacings are defined (as a percent difference from the bulk spacings). If the

interlayer spacings are instead defined by the distance of each layer from the top layer,



117

then the network returned a distance of —3.93% bulk to the second layer and —5.59%
bulk to the third layer, while the conventional search gave —1.8+1.2% bulk to the second
layer and —5.9 + 3.0% bulk to the third layer. In other words, the network returns the
same third layer distance to well within the conventional error bars, but gives a second
layer distance just outside the conventional error bars.

As a further investigation of this result, theoretical 7-V curves were calculated with
both the conventional search results and the conventional search results with the values
of di, and dyy switched. As shown in Fig. (6.1), switching the two interlayer spacings
results in very similar -V curves. This example illustrates a difficulty common to all sur-
face structure determination using LEED -V spectra: since /-V data are not necessarily

unambiguous, there may be some ambiguity in the structure determination.

6.4 Further Improvements

Another attempt to improve on this result involved the use of independent information in
creating network training data. Since the bulk composition of the alloy is 50% nickel, one
would expect that the mean composition of the first few atomic layers would also be close
to 50% nickel. Accordingly, a set of training data was created which consisted entirely of
structures whose mean composition in the first three atomic layers ranged from 40-60%
nickel. While this reduced the size of the training data (and thus the training time) by
roughly a factor of 2, it did not significantly affect the results; the network was still able
to find esseentially the same results as the exhaustive search for all surface parameters.
One difficulty encountered in using a network to simultaneously determine five struc-

tural parameters is that the network would tend to diverge when given too many training



Intensity (Arbitrary Units)

118

Ni ,Pd,(100) |-V Curves with Swapped Layer Spacings

0.006

Conventional
------- Swapped

0.005

1
o

0.004

1

0.003

1

1

0.002

0.001

0.000

1

0 50 100 150 200 250 300 350

Incident Electron Energy Index

Figure 6.1: Theoretical I-V curves for NisoPds,(100) (with “swapped” layer spacings).

The curve labeled “conventional” is for Adyy, = —1.8%, Adsy = —4.1%; the curve

labeled “swapped” is for Adyy = —4.1%, Adzy = —1.8%.



119

examples. If, for example, one creates a set of training data consisting of five varying
parameters (C, Cy, CYy, dy3, dy3) sampled at six points each, this creates a set of training
data containing 6° = 7776 different structures. It was found that training a network with
data sets of this size would cause the (un-scaled) network outputs to saturate at either O
or 1, thus giving useless scaled outputs.

Several strategies were attempted to try to remedy this situation. At first it was thought
that the additional data being shown to the network might require more hidden nodes so
that more weights would be available to store the additional information in the network.
Many attempts were made to train the network with 7776 examples in the training data,
in which the number of hidden nodes in the network was increased from 30 to as many as
250 nodes. None of these attempts succeeded in making the network converge for these
large training data sets.

Another attempt at fixing this difficulty was to decrease the initial network weights.
Network weights are initialized to small random values; nominally, the LEEDNET pro-
gram uses random numbers ~ 101, Several attempts were made to decrease these initial
weights to numbers as low as ~ 107", with no effect on the convergence of the network.
Attempts to simultaneously increase the number of hidden nodes and lower the initial
network weights also had no effect; the network continued to give saturated unscaled
outputs of either O or 1.

One way to circumvent this convergence problem is to simply decrease the size of
the training data set. Experience throughout this Dissertation shows that the network will
converge well for training data sets consisting of ~500 spectra or fewer, but the outputs
become saturated if much more training data (~ 1000 or more spectra) are used. To

decrease the size of the data set, a program was written which samples a data set at fixed



120

intervals to produce a new data set which may then be used to train the network. One may,
for example, have a set of [-V spectra in which each of five surface parameters varies
over six different values, for a total of 6° — 7776 spectra. If this data set is sampled so
that only every 13th spectrum is used, a data set is produced consisting of 599 structures,
which does converge. As noted in Chapter 4, however, one must be careful to sample the
original data set at an interval which will sample the parameter space well so that each
parameter in the sampled data is allowed to vary over its entire range.

This difficulty with network convergence when using large sets of training data was
ultimately traced to the “batch” learning used by the network, as described in section
3.9. When training the network on a set of -V spectra, the entire set of training data is
shown to the network, one spectrum at a time. The network error is computed after each
spectrum, and all errors are added together for the entire data sct to find the network’s
net error, which is then used to adjust the network weights. Using batch learning, rather
than correcting the network weights after each individual spectrum, prevents the network
training from being unduly biased in favor of those examples which it was shown most
recently.

The network error after cach batch is updated according to the adaptive learning rate
given by Eq. (3.41):

Cm—1 + K ]f dmfm, > 0 )

) f—
("777, -

€m—1 X (/) lt dm.fm S 0.

The actual weight change is then proportional to the adaptive learning rate e,,,. If a large
number of spectra is used to train the network, then the network errors at the end of one

“batch” of training will tend to be larger than for a smaller training data set. Accordingly,



121

the adaptive learning rate parameter  should be scaled according to the number of spectra
in the training data. This was done, and it was found that decreasing the value x for
larger numbers of spectra in the training data does, in fact, allow the network to converge
properly.

However, experience with the network has generally shown that better results are
achieved by training the network with a reduced set of training data, rather than using
the full set of training data with a reduced learning parameter . For example, consider
the problem of using the network to determine the top three atomic layer compositions,
as discussed in the previous section. I-V spectra may be calculated for this problem for
which the compositions of each of the top three atomic layers varies between 0 and 100%
Ni, in steps of 10%, for a total of 11" = 1331 structures. To permit the network to
converge on the training data, one could either train the network with all 1331 structures
using a small s (e.g. x = 0.01), or one could create a smaller set of training data by
using only every third spectrum in the training data, thereby reducing the training data
set to 444 structures. Both of thesc options were tried with a network training for 200
epochs, and the results are shown in Table 6.7. As shown in the table, better results are
obtained by reducing the size of the training data set to less than ~ 500 spectra. As a
bonus, the reduced-size training set case requires only one-third the training time of the

full-size case.

6.5 Energy Shift

The inner potential energy shift (described in Chapter 2) is a rigid shift of the -V spectrum

along the energy axis due to the presence of a potential step at the metal surface. Through-



122

Training | Training Results
Parameter | Range | Interval | Full Reduced Conventional
Cy (%Ni) |0 100 10 31.18  13.79 20+ 11
Cy (%Ni) | 0 100 10 | 6148  90.01 10019,
Cs (%Ni) | 0 100 10 26.80  31.27 34+ 14

Table 6.7: Network test results for determination of atomic compositions, comparing two
methods for ensuring network convergence.

The column labeled “Full” shows the results for the full training data set of 1331 spectra,
with a smaller learning rate parameter ~ = (.01. The column labeled “Reduced” is
for a reduced training data set of 444 spectra, with learning rate parameter x = 0.1.
The “Conventional” column gives the results of a conventional exhaustive search [34].
The atomic interlayer spacings were set at their conventionally-determined values (d;, =
—1.8% of bulk, dyy = —4.1% of bulk). Network training was for 200 epochs in both
cases.

out most of this study, this energy shift was known from a comparison with the known
surface structure, as determined by a conventional calculation. A predicted /-V spectrum
was dynamically calculated using the surface parameters found by a conventional search
[34]; the Pendry Y -function of this spectrum and the experimental spectrum was then
found, and the two spectra were shifted with respect to each other in steps of 0.1 eV. For
each shift, the root-mean-squared error between the two spectra was computed; a value
of —4.7 eV was found to be the shift which produced the minimum error, and thus the
best agreement between theory and experiment.

If the inner potential energy shift of the sample being investigated is by some means
known a priori, it may be used to correct the experimental data before showing the

experimental data to the network. Even a rough approximation of inner potential energy



123

Energy Structure Parameter
Shift (eV) | C (%) Co(%) C3(%) Adip(%)  Adoas(%)
-1 30.284 61.957 26019 —4.78 -2.18
—2 28.693 71.246 30.698  —4.67 —2.13
-3 28.145 79.147 35445 -4.51 —1.98
—4 28213 83.653 38.836  —4.25 —1.80
—d 28.584 83.299 40.655 —3.82 —1.63
—6 28726 77.730 41.110  -3.15 —1.42

Table 6.8: Network test results for a variety of inner potential energy shifts.
Note the relative insensitivity of the network results to the value of the energy shift chosen.

shift is sufficient for the network to return adequate results. Table 6.8 shows the network
results after being shown experimental data for NisPdso(100) shifted for energy shifts of
1eV to —6 eV. As shown in the table, the parameters returned by the network are all
similar to those returned for the optimum shift (found by comparison with the conventional

search results, Table 6.6). regardless of the energy shift used.

6.6 Transferability

One potential advantage of artificial neural networks is that once trained for one crystal,
it may be able to recognize the surface parameters in similar materials. To test this
idea, the network was first trained on the NisgPdso(100) surface described earlier. -V
spectra were then calculated for a similar crystal surface, CuzPds(100), by repeating

the dynamical calculations for NizoPdso(100) using the same structure parameters, but



124

Training | Training Results
Parameter | Range Interval | Expected Network
Cy (%Ni) | 0 100 20 20+ 11 14.08
Cy (%Ni) | 0 100 20 10019, 103.30
Cy (%Ni) | 0 100 20 34+ 14 39.29
Adyy (%) | =7 43 2 -18+12 —0.87
Adys (%) | =7 +3 2 -41+18 —4.60

Table 6.9: Network test results for simultaneous determination of compositions and in-
terlayer spacings for CusgPdso(100).

The network was trained on dynamically calculated data for NisoPds,(100), then shown
dynamically calculated spectra for CusgPdso(100) for which €', = 20%Ni, C, = 100%Ni,
Cy = 34%Ni, Ady = —1.8% bulk, and Ady; = —4.1% bulk.

with phase shifts for CuPd. This data was shown to the network; the results, shown in
Table 6.9, demonstate the network’s ability to successfully recognize the CuPd structure

parameters in this case.

6.7 Discussion

A backpropagation neural network has been shown to be able to correctly identify two
interlayer spacings (given the layer compositions) and the three top layer compositions
(given the interlayer spacings) to within the error bars specified for a conventional ex-
haustive search. The network was also able to find all five parameters simultaneously;
this required adjusting the network’s learning rate parameters to accommodate the larger

number of training examples and to ensure that the convergence was sufficiently slow



125

that the global minimum in the error surface was not missed. The network’s results were
shown to be relatively insensitive to the value chosen for the inner potential energy shift.

Neural networks offer some advantanges in lessening the computation time needed
needed to perform a surface structure determination. The time required to perform an
exhaustive search scales exponentially with N (i.e. as "), where N is the number of
structure parameters being sought and ¢ is related to the number of points in each dimen-
sion of parameter space [22]. Simulated annealing algorithms, on the other hand, scale
as a polynomial in the number of degrees of freedom [36], i.e. as N” in this case.

The computational effort required to perform a neural network search scales expo-
nentially with the number of search parameters as does an exhaustive search, although
the number of structures in each dimension of parameters space can be smaller than for
an exhaustive search. That is, the computation time required will scale as e . where
Enn < E.

The savings in computational time of an artificial neural nctwork over an exhaustive
search is due in large part to the coarser grid of dynamically calculated data compared
to the grid needed for the exhaustive search. This ability to return results using a coarse
parameter grid is related to the network’s ability to “interpolate” between structures on
which it has been trained. One must therefore provide the network with I-V spectra on a
grid just fine enough to permit an accurate interpolation. As discussed earlier, it was found
that a 20% spacing in the compositions and a 2% spacing in the grid of interlayer spacings
was adequate for the network to successfully recognize the experimental 7-V spectra.

A neural network search thus offers some advantages over an exhaustive search. It
can be trained on a relatively coarse grid of structures in parameter space, so that fewer

dynamical LEED spectra need to be calculated, resulting in a substantial savings of



126

computer time. Once trained, the network can be shown several experimental spectra
of different samples and immediately return the structure parameters, without a need to
search the parameter space again. Finally, the network’s ability to recognize the structure
parameters for CuPd after having been trained on NiPd spectra illustrates a potential for

transferability of a trained network to other similar materials,

6.8 Concluding Remarks

6.8.1 Future Directions

Standard backpropagation neural network designs use a gradient descent method to update
the network weights. Future improvements in the use artificial neural networks for LEED
structural determination might be realized by tinding improved methods for updating these
weights. For example, one might consider developing a backpropagation network in which
network weights are updated according to a simulated annealing algorithm, rather than
the standard gradient descent equations.

Other future work might center on the testing the ability of a network to recognize
reconstructed surfaces, or surfaces with adsorbate layers. In addition, there are many
questions in neural network theory that remain unanswered (such as the g priori determi-
nation of the number of required hidden nodes) that would be of great practical interest

in the application of networks to practical problems.



127

6.8.2 Summary

A backpropagation artificial neural network has been shown to identify the atomic layer
compositions and interlayer spacings for the (100) surface of NisgPdso in agreement with
the results found by a conventional exhaustive search. The best results were found for
problems involving fewer search parameters, such as finding two interlayer spacings or
three compositions alone. Successfully finding five parameters simultaneously proved a
bit more difficult, and required some adjustment of the network training parameters.
The surface used in this study, that of NigPdsp, is for a binary alloy and has five
significant surface parameters that are of interest. Simpler structures, such as elemental
metal crystal surfaces, would involve fewer search parameters and would therefore be
good candidates for structure determination with a neural network. In such cases, use
of a neural network offers several advantages. Relatively few (~ 500) /-V spectra need
be calculated; since each such spectrum involves fairly complicated and time-consuming
dynamical calculations, this can result in a significant time savings. The network training
(using the Pendry Y'-function) typically converges after just a few hundred training epochs,
often involving less than one hour of computer time. Once trained, the network can
immediately identify surface parameters when shown an experimental -V spectrum. This
can result in a particularly significant time savings if data from several similar samples

are to be analyzed.



Appendix A

LEEDNET User’s Guide

LEEDNET 1is an artificial ncural network program that implements a backpropagation
network for the analysis of low-energy electron diffraction (LEED) /-V spectra. Using
standard computer codes [11], one can generate theoretical -V spectra for a number of
plausible surface structures. LEEDNET will allow this data to be formatted into its own
data format, after which it can be uscd to train the network on these /-V spectra. Once
trained, the network may be shown an experimental /-V spectrum and asked to identify
the surface parameters.

LEEDNET has a command-line interface which allows it to be run either interactively
or as a batch job through the execution of script files. The interface allows the network
to be readily customized for the problem at hand, and it includes built-in help files.

LEEDNET is written in standard ANSI C, and should be highly portable to a wide
variety of computer platforms. For this dissertation, LEEDNET was run on a Silicon

Graphics computer running a UNIX operating system.

128



129

A.1 Running LEEDNET

To run LEEDNET in interactive mode under UNIX, type

$ leednet

LEEDNET Version 1.04h
(11>

LEEDNET begins by displaying the program version number; this may also be dis-
played at any time by typing the ver command at the command prompt. The string [1]>
is the command prompt, and indicates that LEEDNET is waiting for a command to be
input. The number between the square brackets begins at 1 when LEEDNET is started,
and increments by | each time a command is entered.

On-line help is available for LEEDNET at any time by typing help at the command
prompt:

(11> help

Typing help without arguments prints a list of the available LEEDNET commands.
One may also type help env at the command prompt to see a description of available
environment variables (q.v.), or help cmdname for detailed help on a specific command.

To exit LEEDNET, simply type either quit or exit at the command prompt:

[2]> quit
$

LEEDNET may also be run in batch mode; this is particularly useful for network
training, which can require several hours of computer time. To run LEEDNET in batch
mode, one creates a scripting file with a . scr” file extension which contains the LEED-

NET commands to be run. One then passes the file name (sans .scr extension) on



130

the LEEDNET command line and submits LEEDNET as a batch job. If one creates a
scripting file called run001.scr, for example, it can be run under UNIX as a batch job

using

$ leednet run001 &

One should always end a scripting file with a quit command so that the batch job

terminates the LEEDNET program.

A.2 Environment Variables

The operation of the LEEDNET program and its network parameters may be customized
by the setting of environment variables. Subsection A.8 summarizes each of the available
environment variables and their use. The values of all environment variables may be
displayed at any time by typing set (without arguments) at the LEEDNET command
line.

The value of an environment variable may be changed by using the “set” command:

set <varname>=<value>

A.3 File LEEDNET . INT

Whenever the LEEDNET program begins, it will look for a file called LEEDNET. INT in
the current directory. This file is used to start LEEDNET with any desired values in
the environment variables so that they need not be set manually each time LEEDNET is

started.



131

The lines in the LEEDNET . INT file may be of three types:

(1) Any line beginning with a semicolon (;) is a comment line and is ignored.

(2) A line of the form <varname>=<value>> sets environment variable <varname>
to the value <value> upon starting LEEDNET.

(3) An output node scaling may be set with a line of the form scale <n> <tmin>

<tmax>. See Section A.7 for a description of the scale command.

A.4 Formatting the Data

The first step in using LEEDNET is to format the dynamically calculated 7-V data into
a format usable to the program. LEEDNET data files are plain text files which contain

three header lines followed by the intensity data and network parameters:

Number of input nodes (I)

Number of output nodes (J)

Number of structures in data file (N)

I lines of intensity data > repeated

J lines of output parameters > N times

Note than energy values are not explicitly used by the network.

To format the dynamically calculated data, begin by writing a C function to convert
the dynamically calculated /-V data into this format. Appendix C shows an example
program, FORMATO1.C. This function should then be linked into the LEEDNET main
program, following the example of format01() shown in the LEEDNET listing in Ap-

pendix B. Once LEEDNET has been properly compiled and linked, it can by run and the



132

format command used to format the data. For example, suppose the original dynamically
calculated 7-V data is in a file called iv.dat, and we wish to format the data, placing
the output into a new file iv.fmt using function format01(). The following LEEDNET

commands would be used:

[1]> set original=iv.dat
[2]> set formatted=iv.fmt
[3]> set function=1

[4]> format

The original environment variable specifies the file name of the original data file; the
formatted variable specifies the file name of the output data file; and function specifies
which of several possible formatting functions is to be used (1 indicates format01()).

If a large amount of data is involved so that a large amount of time would be needed
to format the data, it may be useful to place these commands into a scripting file and to

run LEEDNET as a batch program, as described earlier.

A.5 Training the Network

Once the -V data has been properly formatted, the network can be trained using the train
command. Since network training generally involves significant amounts of computer
time, network training is usually done through a scripting file, running LEEDNET as a
batch program. At a minimum, this scripting file should contain commands to set the
training environment variable to specify the name of the file containing the training
data; to set the epochs variable to specify the number of training epochs; and the save
variable to save the network weights once training is completed. A typical scripting file

is shown below.



133

; Network run #77

set training=/umbc/research/rous/Simpson/ivyr.055
set weightfile=/umbc/research/rous/Simpson/weights.077
set errordat=/umbc/research/rous/Simpson/error.077
set hidden=40

set epochs=10000

set delprt=100

set delanalyze=100

set errorlim=1.0e-17

set adaptive=1

set kappa=0.001

set phi=0.85

scale 1 0 100

scale 2 0 100

scale 3 0 100

scale 4 1.7391 1.9261
scale 5 1.7391 1.9261
train

save

quit

In this example, environment variables are set to specify the name of the file containing
the (formatted) training data; the file name to hold the final network weights; and the file
name to hold the network training error (at intervals of delprt epochs). This scripting
file also specifies a network with 40 hidden nodes, that adaptive learning should be used,
and gives scale commands to properly scale the network outputs. The train command
near the end of the script actually performs the network training; when finished, the save
command saves the network weights into the file specified by weightfile.

Two features in LEEDNET allow the user to keep track of the training of the net-
work. The delanalyze environment variable specifies the interval at which to save the

intermediate network weights. The network weights will be saved every delanalyze



134

epochs into a file called innnnnnn.wgt, where nnnnnnn is the number of epochs. This
allows the user to monitor the performance of the network before the final training is
completed. Also, the current training cpoch and training error are saved to a a file given
by the statusfile variable every delprt cpochs. so that this file may by displayed at

the terminal at any time to check the training status.

A.6 Using the Trained Network

Once the network has been trained, the network is used by loading the appropriate weights,
specifying an input file (containing onc sct of I-V spectra which the network will be asked
to identify), and using the ask command to run the network. For example,

[1]> set weightfile=weights.077
[2]> load

[3]> set single=expdata.dat
(41> scale 1 0 100

[6]> scale 2 0 100

[6]> scale 3 0 100

[7]1> scale 4 1.7391 1.9261

[8]> scale 5 1.7391 1.9261

[9]> ask

Here the 1oad command loads the network weights from weights.077, single spec-
ifies the name of the data file containing the /-V/ spectra to be identified (e.g. experimental

data), and the ask command runs the network and gives the network’s results.



135

A.7 Command Reference

alloc

Allocates memory for the network. The memory allocated is based on the number of input,
hidden, and output nodes currently defined (environment variables inputs, hidden, and

outputs. The memory is dynamically allocated on the heap.

analyze

Analyze a network from its training data. The analyze command reads the number of
inputs, outputs, and structures from the training file. It then loads network weights
from weightfile. Finally, it shows each structure in anlinfile to the network and
compares the network’s outputs to the expected outputs in the training data. The statistics

on the final results are sent to the file defined by the environment variable anloutfile.

ask

Asks a trained network to process input. Shows the file defined by environment variable

single to the network, runs the network, and displays its outputs.

debeam

Separate dataset into individual beams. The file defined by the environment variable
formatted contains the LEEDNET-format I(V) data, variable beams should be set to the

number of separate beams in each spectrum, and variable inputs should be set to the



136

total number of points in each spectrum. Each I(V) spectrum is divided into beams equal

data sets; the output files are named beam.nnn.

dump

Dump network weights. The current values of all network weights are dumped to the file

whose name is given by the environment variable dumpfile.

dw

Display a single network weight. The command syntax is: dw v|w i j where v asks to
display an input-to-hidden weight; w asks to display a hidden-to-output weight; and 1,j

are the weight indices.

exit

Quit LEEDNET. The exit and quit commands are equivalent.

format

Format data into LEEDNET format. I(V) data is re-formatted from its original format into
the format used by LEEDNET. Several different formatting functions may be available;

they are selected using the environment variable function. (original — formatted)



137

help

Help on LEEDNET commands. Type help for a list of available commands. Type help
cmd for detailed help on command “cmd”. Type help env to display help on environment

variables.

load

Load network weights. Network weights are loaded from the file defined by environment
variable weightfile. The number of input nodes, output nodes, and structures (variables

inputs, outputs, and structures) will also be loaded.

mem

Display memory usage report. Type mem to display the current network memory usage.
Type mem <inputs> <hidden> <outputs> to display the memory that would be

required for a network of the specified number of input, hidden, and output nodes.

merge

Merge several data files together. The merge command will prompt for the name to be
given to the output file. It will then ask for the names of the input files, each of which
should contain one structure (created, for example, by the separate command). Enter a
carriage return by itself after the last file name is entered. When done, manually update

line 3 of the output file (total number of structures).



138

plot

Generate I(V) plot data. The file given by the environment variable £ ormatted is bro-
ken into spectra for individual structures, and I vs. E data is saved into files named
struct.nnn. The data in each file is in ASCII format and is suitable for plotting with a

spreadsheet program.

prune

Prune points from a data set. The data file specified by the environment variable
formatted is “pruned” by keeping only every n-th point, where n is given by the en-
vironment variable skip. The result is saved in the file specified by the environment

variable prune. (formatted — pruned)

quit

Quit LEEDNET. The exit and quit commands are equivalent.

randomize

Initialize random number generator from system time.

rebeam

Combine data sets for individual structures into one file. The user is prompted for the
names of the files containing the individual beam data, and the beam data is combined

into a single file whose name is specified by the beamoutfile environment variable.



139

resume

Resume a training run. To resume a training run, type: set weightfile=<weight filename >

set resumeepoch=<epoch number> resume

save

Save network weights. Network weights are saved to the file defined by environment
variable weightfile. The number of input nodes, output nodes, and structures (variables

inputs, outputs, and structures) will also be saved.

scale

Display or set network output scaling constants. Type scale with no arguments to dis-
play the current values of all scaling constants. Type scale <n> <tmin> <tmax>
[<smin> <smax>] [n] to calculate and save scaling constants for output <n> for
true values ranging between <tmin> and <tmax>. The optional minimum and max-
imum scaled values <smin> and <smax> default to 0.1 and 0.9, respectively. If an
n is specified, the scaling is calculated but not stored. Type scale <n> <value> to

perform true—scaled and scaled—true conversions of <value> for output <n>.

separate

Separate data in a data set. A single structure is isolated from the data set specified by
the environment variable formatted. The environment variable sepnum should be set to

the number (starting from 0) of the structure to be isolated. The separate command will



140

then place the spectrum for that structure into the file whose name is given by the single
variable, and the remaining spectra will be placed into the file whose name is given by

the missing variable. (formatted — missing, single)

set

Set/display environment variables. Type set with no arguments to display the current val-
ues of all environment variables. Type set <varname>=<value> to set an environment

variable to a new valuc.

status

Show network training status. The network training status is peroidically stored in the
file defined by the environment variable statusfile, provided the status variable is

set to 1. The status command displays the contents of this file.

train

Train the network. The file specified by the training environment variable is used to
train the network for “epochs™ training epochs. Type train [cont] to continue training

that has been stopped.

ver

Display LEEDNET version number.



141

A.8 Environment Variable Reference

adaptive: Adaptive learning rate flag (1=on, O=off)
anlinfile: Analysis input file (for analyze command)
anloutfile: Analysis output file (for analyze command)
beamoutfile: Beam output file (for rebeam command)
beams: Number of beams in input (for debeam and rebeam)
debug: Debug mode on/off flag
delanalyze: Interval (epochs) to save network weights
delprt: Number of epochs to print msg and save error report
dumpfile: Network weight dump file name
epochs: Number of epochs to train the network
errordat: Error vs. epoch output file name
errorlim: Training error limit
formatted: Formatted data file namc (LEEDNET format)
function: Selects a formatting function for format command
helpfile: Help file name
hidden: Number of network hidden nodes
inputs: Number of network input nodes
kappa: Kappa parameter for adaptive learning
missing: Missing [ structure file name (for separate cmd)
mu: Momentum parameter for learning rate
numpts: Number of points in I(V) curve

original: Original data file name (for format command)



142

outputs: Number of network output nodes

pause: Training pause (epochs)

phi: Phi parameter for adaptive learning

plotfile: Plot data output file name

pruned: Pruned data file name (prune command)
resumeepoch: Resume epoch (for resume command)
seed: Seed for random number generator

seedmult: Random seed multiplier

sepnum: Number of structure to be isolated for separate cmd
single: [-structure {ilc name (separate and ask cmds)
skip: Number of points to skip for prune command
status: Training status on/off flag (1=on, O=off)
statusfile: Training status file name

structures: Number of structures in data sct

theta: Theta parameter to control averaging period
training: Training data file name

weightfile: File name under which to save or load network weights



Appendix B

Listing of Program LEEDNET.C

/* File LEEDNET.C */
/* Aok Rk Ak K ook o ek KK kK /
/* */
/% LEEDNET */
/% */
/* This program implements an artificial neural network to recognize */
/% LEED I(V) curves. */
/* */
/* This source code is standard ANSI C and should be highly portable. */
I x/
/* David G. Simpson */
/* Department of Physics */
/* University of Maryland, Baltimore Connty */
/% Catonsville, Maryland */
/* */
/* July 10, 1996 «/
/* */

P e T L e T

VAT XKk X EEEE R EEEEEY ¥/
/* */
/* Files used: */
/* */
/* Source code: */
/% leednet.c Main LEEDNET source code */
/* format0l1.c Custom function to format raw data to LEEDNET format */
/* leednet.h LEEDNET header file */
/* */
/* Auxiliary file: */
/* leednet.hlp  LEEDNET help file (for "help" command) */
/* */
/* Optional initialization files: */
/* leednet.ini  Initialization file */
/* */
/% — S —

S AR A AR KKK KR KKK KK KR KR KRR KKK KK KKK KK KK KKK R R K ROK KR KRRk R Ak [

/*
/*
/*
/*
/*
/*
/*
/*

LEEDNET command summary

alloc Allocate memory for the network

analyze Analyze a network from its training data
ask Ask a trained network to process input
debeam Separate data set into individual beams
dump Dump network weights

143

*/
*/
*/
*/
*/
*/
*/
*/



/¥ dw Display network weight */
/*  exit Quit LEEDNET */
/* format Re-format data to LEEDNET format */
/* help Help on LEEDNET commands */
/* load Load network weights */
/* mem Display memory usage report */
/* merge Merge data files together */
/* plot Generate I(V) plot data */
/* prune Prune points from a data set */
/*  quit Quit LEEDNET */
/* randomize Initialize random number generator from system time */
/* rebeam Re-assemble data set from individual beams */
/*  resume Resume a training run */
/*  save Save network weights */
/* scale Set/display network output scaling coenstants */
/* separate Separate data 1n a data set */
/* set Set./display environment variables */
/* status Show network training status */
/* train Train a network */
/% ver Display LEEDNET version number */
/* */
/ n— % I /
/ Aok Aok R AR AR R Rk [
I */
/* Version History (Abbreviated) */
/¥ e e */
/* 1.00a Original version */
/* 1.04a Changed scalings to arrays to support 10 separate scalings. */
/% 1.04b  Added range checking to above (1-9). */
/* 1.04c  Added "scale" command to leednet.ini. */
/* 1.04d  Added SEEDMULT environment variable */
/* 1.04e  Added format function #7 */
/* 1.04f Added format function #8 */
/* 1.04g  Added new format function #8 */
/* 1.04h  Dressed up (more comments &c.) for dissertation. Removed all */
/* "format" files except format0l for brevity. */
/% */
/ P— BT T o T T ——
/* ETey ok oK oK k3 Rk koK KK KK KK KR K SR o oK o kR R R KK K koo
/* #includes */
AR A AR AR A A AR KK KA K KRR KKK R AR AR KA KN */
#include <stdio.h> /* standard i/o =/
#include <stdlib.h> /* standard library */
#include <time.h> /* time functions */
#include <math.h> /* math functions */
#include <string.h> /* string functions x/
#include <ctype.h> /* character functions */
#include "leednet.h" /* leednet-specific definitions =*/

T T T T4

/% #defines */
/ A Ehbdad AR *okx )
#define VERSION "1.04h" /* software version number */
#define CMDSIZE 6 /* num of cmd parameters + 1 */
#define ENVLINE 31 /* size of environment line str x*/
#define CMDLNSZ 80 /* size of cmd line */
#define INFINITY 1.0e+30; /* effective infinity */
#define SCALINGS 10 /% size of scaling arrays */
/ kAR ERR ok ko R KKK K ook ok s K ke
/* macros */
/* */
/* These function-like macros are used to access the dynamically allocated */
/* arrays. */

/A AR A KK AN A MK AR KKK KK KKK A *okx /)

144



#define X(i) *(x+i)

#define V(i,j) #(v+(i*(hidden+1))+j)
#define Z_IN(i) *(z_in+i)

#define Z(i) *(z+i)

#define W(i,j) *(w+ (1% (outputs+1))+j)
#define Y_IN(i) *(y_in+i)

#define Y(i) *(y+i)

#define YY(i) *(yy+i)

#define T(i) *(t+i)

#define DELTA_IN_J(i) =*(delta_in_j+i)

#define DELTA_J(i) *(delta_j+i)

#define DELTA_K(i) *(delta_k+i)

#define DEL_V(i,j) *(del_v+(i*(hidden+1)}+j)
#define DEL_W(i,j) *(del_w+(i* (outputs+1))+j)
#define F_V(i,j) *(f_v+(i*(hidden+1))+j)
#define E_V(i,j) *(e_v+(i*(hidden+1))+j)
#define C_V(i,j) *#(c_v+(i*(hidden+1))+j)
#define F_W(i,j) «(f_w+(i* (ontputs+1))+j)
#define E_W(i,j) *(e_ut+(i*(outputs+1))+j)
#define C_W(i,j) *(c_wt(i*(outputs+1))+j)
#define P(i) *(p+i)

#define Q(i) *(q+i)

#define TARGET (i) *(target+i)

#define TRAINING_STRUCT(i,j) #*(training_struct+{i*outputs)+j)

/ KA R onr oy /
/* global variables x/
long i, j, k, m, ex; /* loop counters */
short done 0; /* 0=not done,l-done with leednet*/
long cmdnum /* command number (for prompt)  */
char *cp, *cq; /* character pointers */
long inputs; /* number of input nodes */
long hidden; /* number of hidden nodes */
long outputs; /* number of output nodes */
long function; /¥ data conv function number */
long epochs; /* number of epochs to teach */
long delanalyze; /* num of epochs to analyze */
long delprt; /* num of epochs to print message*/
float mu; /* momentum rate for learning */
float kappa; /* amount to incr learning rate */
float phi; /* factor to multiply learn rate */

float theta;
float ay[SCALINGS]={

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

/*
/*

ctrl time period of averaging */
output linear scaling coeffs =/

float by[SCALINGS]={ /* output const scaling coeffs  */
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
float error; /* network error */
double mem; /* array memory used (bytes); */
short resume _flag = 0; /* 1=resume a run */
long start_epoch; /* start epoch number */
int seed; /* seed for rand num generator */
long numpts; /* num of points in i(v) curve  */
long structures; /* num structures in data set */
long sepnum; /* structure num to extract */
long skip; /* interval to skip pruned data */
short status; /* status on/off flag */
short adaptive; /* adaptive learning rate flag */
long pause; /* training pause (epochs) */
long beams; /* number of beams in input */
long resumeepoch; /* resume epoch number */
float errorlim; /* training error limit */
float seedmult; /* random seed multiplier */
short term_input; /% 1=terminal input, O=file inputx*/
char 1ine[200]; /* input line */
char cmdstr [CMDSIZE] [CMDLNSZ]; /* command string & params */
char dafilename[80]; /* delanalyze filename */
char env_var [ENVIRONMENT]} [ENVLINE] = { /* envirenment variables: */
“original”, /* 0 %/ /% original data file name */
"*formatted", /* 1 %/ /* formatted data file name */
"missing", /* 2%/ /* missing 1 struct file name */
"single", /* 3 %/ /% 1 structure file name */
"pruned", /* 4 %/ /* pruned data file name */
"training", /* 6 %/ /* training data file name */
“errordat", /x 6 %/ /* error vs epoch file name */
"dumpfile", /¥ 7 %/ /* dump file name */

145



"helpfile",
"plotfile”,
“inputs*,
“hidden",
“outputs",
“function",
"epochs",
"delprt",
ma",
"kappa“,
“phi",
“theta",
"weightfile",
"seed",
"numpts”,
"structures”,
"sepnum”,
"skip",
"status",
"statusfile",
"adaptive",
“pause”,
“debug" ,
“"beams",
"errorlim",
“anlinfile",
"anloutfile",
"beamoutfile",
"delanalyze",
"resumeepoch”,
"seedmult”

};

/* 8
/* 9
/% 10
/% 11
/% 12
/* 13
/* 14
/* 18
/* 186
/* 17
/* 18
/* 19
/* 20
/* 21
/x 22
/% 23
/* 24
/* 25
/* 26
/* 27
/% 28
/* 29
/* 30
/% 31
/* 32
/* 33
/* 34
/* 35
/% 36
/* 37
/% 38

char env_value [ENVIRONMENT] {LINESIZE] =

"iv.dat" B
Yiv.fmt",
iv.mis",
iv.sin",
iv.pru”,
"iv.fmt",
"iv.out",
"leednet.dmp",
"leednet.hlp",
"iv .plt" >
100",

500",

wan,

nyw,

20",

nye

"0.0",

"0.1",

"0.5",

"o.7",
"iv.wgt”,

TR

160",

180",

7T,

e,

BT
"leednet.sta",
BTN

n_ge,

"off",

g

"0.0",
“analyze.in",
"analyze.out",
"iv.bem",
nogn,

vy,

"1.0e-04"

FILE *trnfp;
FILE *errfp;
FILE *statfp;
FILE =*testfp;
FILE *cmdfp;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*

original
formatted
missing
single
pruned
training
errordat
dumpfile
helpfile
plotfile
inputs
hidden

~ outputs

function
epochs
delprt

mu

kappa

phi

theta
weightfile
seed
numpts
structures
sepnum
skip
status
statusfile
adaptive
pause
debug
beams
errorlim
anlinfile
anloutfile
beamoutfile
delanalyze
resumeepoch
seedmult

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
=/
*/
*/
*/
*/
*/
*/

{

*/
=/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
=/
*/
*/
=/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
=/
-/
=/
=/
*/
*/
*/
*/
*/
«/
=/
=/

/%
/*
/*
/*
/*
/*
/*
/x
/*
/*
/*
/*
/*
/%
/%
/%
/*
/*
/>
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/%
/*
/%
VAl
/*
/*
/*
/*
/*
/*
/x
/*
/*
/*
/%
/*
/*
/%
/*
/%
/%
/*
/*
/*
/*
/*
/*
/=
/*
/*
/*

/%
/x
/*
/*
/*

/*
/*
/%
/*
/%

help file name */
plot data file name */
number of input nodes */
number of hidden nodes */
number of output nodes */
data conv function number */
num of epochs to teach */

num of epochs to prt messagex/
momentum rate for learning */
amt to incr learning rate  */
factor to mult learning ratex/
ctrl time period for avg’ing*/
saved net weights file name */
seed for rand num generator */
num of points in i(v) curve */
num structures in data set x/
structure num to extract */
num of points to skip data =x/
training status on/off flag */

training status filename */
adaptive learning rate flag x/
training pause (epochs) */
debug mode on/off */
number of beams in input */
training error limit */
analysis input file */
analysis output file */
rebeam output file */
num of epochs to analyze */
resume epoch number */
random seed multiplier */

euv variable values - defaults*/

original data file name */
formatted data file name */
missing 1 striuct file name */
1 structure file name */
pruned data file name */
training data file name */
error vs epoch file name */
weight dump file name */
help file name */
plot data file name */
number of input nodes */
number of hidden nodes */
number of output nodes */
data conv function murber  */
num of epochs to teach */

num of epochs to prt message=*/
momentum rate for learning */
amt to incr learning rate  */
factor to mult learning ratex/
ctrl time period for avg’ing¥/
saved net weights file name */
seed for rand num generator */
num of points in i(v) curve */
num structures in data set */
structure num to extract */
num of points to skip data */
training status on/off flag */

training status filename */
adaptive learning rate flag =/
training pause (epochs) */
debug mode on/off */
number of beams in input */
training error limit */
analysis input file */
analysis output file */
beam output file */
num of epochs to analyze */
resume epoch */
random seed multiplier */

training input file pointer  */

error output file pointer */
status output file */
test input file pointer */
batch command input file ptr =*/

146



FILE =*dumpfp;
FILE *anlinfp;
FILE *anloutfp;
FILE #*danlfp;

float *x;

float *v;

float *z_in;
float *z;

float »*w;

float *y_in;
float =*y;

float *yy;
float *t;

float *delta_in_j;
float =»delta_j;
float *delta_k;
float *del _v;
float +del_w;
float =*f_v;
float *e_v;
float *c_v;
float *f_w;
float *e_w;
float *c_w;

/%
/*
/>
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

dump output file pointer */
analysis input file pointer </
analysis output file pointer */

delanalyze file pointer x/
input neurons */
input-to-hidden weights «/
hidden neurons */
sigmoid-limited hidden neurons*/
hidden-to-output weights x/
output meurons */
sigmoid-limited output neurons*/
unscaled network outputs */
target values at each output =/

float *p;

float *q;

float *target; /* true outputs */
char not_readyl]l =

" command not yet working\n";

struct tm *systime; /* system time */
time_t encoded_time; /* encoded system time */
float rms; /* rms error */
/ AR KRR A K K KR KK Kk KK /
/* function prototypes */
AR A e AR XK e AR KRR K R K Ak Aok kR *ork/
void alloc(void); /* allocate memory */
void analyze(void); /* perform error analysis */
void ask(void); /* ask trained network */
void display_weight(void); /* display weight */
void debeam(void); /* sep dataset into beams /
void dump_weights(void); /* dump weights =/
extern void formatOl(void); /* format function 01 */
void help(void); /* display help on commands */
void 1nit{void); /* initialize data */
void load_env(void); /* load environmental variables =/
void load_weights(void); /* load network weights */
void memory(void); /* display memory usage */
void merge(void); /* merge data files together */
float net_sigmoid(float x); /* sigmoid function */
void net_update_weights(void); /* update network weights */
void net_zero_dels(void); /* zero del_v[] and del_w[] x/
void network(int learn); /* run the network */
void plot_data(void); /* create plot data files */
void prune(void); /* prune data */
float randl(veid); /> random float between 0-1 */
int  rand2(int m); /* random int between 1-n */
float rand3(int n); /* random float between 1-n */
float rand4(void); /* random float -1 to +1 */
void randomiz(void); /* init rand num generator */
void rebeam(void); /* merge beams together */
void save_weights(void); /* save network weights */
void scale(int verbose); /* compute scaling */
void separate(void); /* sep structure from data */
void set(void); /* process set command x/
void show_status{void); /* show training status */
void train(void); /* train the network */
/ > Ak Kok EER2S EAAE AR R K *xx/

147



/* main() */
/ A AN K Aok f
int main(int argc, char *argv[])
{
/ /
/* initialize the program */
/ /
if (arge > 1) /* if an argument is on cmd line */
{
if (tstrcemp(argvil],”terminal®)) /* if "terminal" argument given..*/
term_input = 1; /* ..then get input from terminalx/
else
term_input = 0; /* else get input from file */
}
else /* if no cmd line argument.. */
term_input = 1; /* ..then get input from terminal*/
printf(" LEEDNET Version %s\n",VERSION}; /* print software version number */
init(); /* initialize data */
alloc(); /* allocate memory */
if (!'term_input) /* if getting cmds from a file  */
{
strcpy(line, argv[1]);
strcat(line, ".scr");
if ((cmdfp=fopen(line,"r"})==NULL) /* open cmd input file */

printf(" Input from terminal.\n");
term_input = 1;

else

{

printf (" Input from file %s\n", line);

term_input = 0;

¥
¥

/ /
/% start of main loop */
/ - /
do { /* start of main loop */
if (term_input) /* if getting cmds from terminal */

{
printf (" [%d]> ",++cmdnum) ; /* incr cmd number & print prompt*/
gets(line); /* read in input line */

¥
else /* getting cmds from file */

{
fgets(line,LINESIZE,cmdfp); /* read in input line */
linelstrlen(line)-1] = °\0’; /* lop off final newline char */

}
/ /
/* parse the entered command line */
/ /
cp = line; /* point cp to start of line */
for (i=0; i<CMDSIZE; i++) /* parse the input line */

{
cq = cmdstr[il; /* point cq to start of cmd str */
while ({(xcp==’ ) || (%cp=="=")) /* skip past spaces and = */

cpHt;

vhile ((*cp)&&(*cp!=’ ’)&k(*cpt=’'=’)) /% scan input until \O or space */
*cq++ = *kCpt+; /* copy characters to cmd string */
*cq = *\0’; /* terminate cmd string when donex/

}
/ /
/* See which command was entered and process it. */

148



s

if (!strcmp(cmdstr[0],"alloc"))
alloc();

else if ({stremp(cmdstrl[0l,"analyze"))
analyze();

else if (!strcmp(cmdstr(0],"ask"))
ask();

else if (!strcmp(cmdstr[0],"debeam")}
debeam() ;

else if (Istrcmp(cmdstr(0],“dump®))
dump_weights();

else if (!strcmp(cmdstr[0],"du"))
display_weight();

else if (!strcmp{cmdstr[0],"exit") |1
'strcmp (cmdstr[0), "quit”))
done = 1;

else if (!strcmp(cmdstr[0],"format"))
switch (function)
{
case 1:
formatQ01i();
break;
default:

printf (" Format function ¥%d%s",

function,
“ not defined.\n");

else if (!strcmp{cmdstr[C],"help"))
help();

else if (!strcmp(cmdstrl0],"load"))
load_weights();

else if (!strcmp(cmdstr(0],"mem"))
memory () ;

else if (!strcmp(cmdstr(0],"merge"))
merge();

else if (!strcmp{cmdstr[C],"plot"}}
plot_data();

else if (!strcmp(cmdstr[0],"prune*))
prune();

/*

/*

/%

/*

/*

/*

/*

/*

/*

/%

/*

/*

else if (!strcmp(cmdstr[0],“randomize")) /x

randomiz{) ;

else if (!strcmp(cmdstr[0],"reheam"))
rebeam() ;

else if (!stremp{cmdstr[0],"resume”))
{
resume_flag = 1;
train();

}

else if (!strcmp(cmdstr[0],"”save"))
save_weights();

else if (!strcmp(cmdstrl0],”scale"))
scale(1);

else if (!strcmp(cmdstr[0],"separate"))
separate();

else if (!strcmp(cmdstr([0],"set"})
set();

else if (!strcmp(cmdstr(0],"status"))
show_status({);

/%

/*

/*

/*

/*

/*

/*

alloc *x*

analyze *x¥x

ask  kkx

debeam *#x

dump A%+

dw  Fxx

exit/quit *kk

format x*x

add additional cases here..
..for more format functions

help xx*

load *x=

mem  kxx

merge #*x

plot  *xx

prune k%

randomize xkx

rebeam **x%

resume  kk*

save r*3

scale xxxk

separate k¥x*

status k%

——x/

*/

*/

*/

*/

*/

*/

*/

*/

*/
*/

*/

«/

*/

*/

*/

*/

*/

-/

*/

*/

*/

*/

*/



else if (!strcmp(cmdstr[0],"train")) /* #k%  train kek */
train();
else if (!strcmp(cmdstrl[0],”ver")) /% Rk yer %k */
printf (" LEEDNET Version %s\n",
VERSION) ;
else if ((!strcmp(cmdstrl[0],"\n")) || /* ignore newlines.. */
(!stremp(emdstr[0],"\r"))) /* ..and carriage returns */
{1}
else /* command not recognized */
printf(
" Command \"%s\" not recognized\n",
cmdstr[0]1);
} while (!'dene); /* repeat until ’exit’ or ’quit’ */
/ /
/* end of main() */
/ /
if (!term_input)
fclose(cmdfp);
return O; /* return to operating system */

}

ook oK K

Aok sk K KK K KR e [

*/

/
/* alloc()
/

Aokokok ok kAR

void alloc(void)

s

{

int sf; /* size of float */

static char errstr[] = /* error string */

" Error allocating memory for \"";

sf = sizeof{float); /* find size of float */

/ /

/* free all memory currently used by dynamically allocated arrays. */
/

free(target);
free(q);
free(p);
free(c_w);
free(e w);
free(f_w);
free{c_v);
free(e_v);
free(f _v);
free(del_w);
free(del_v);
free(delta_k);
free(delta_j);
free(delta_in_j);
free(t);
free(yy);
free(y);
free(y_in);
free(w);
free(z);
free(z_in);
free(v);
free(x);

150



/* Now allocate memory for each of the dynamic arrays on the heap. */
/* In each case, print an error message and return if the allocation was */
/* mnot successful. */
/ /
x = (float *)malloc((inputs+1)*sf); /*  x */
if (1x)

{

printf ("%s¥%s\"\n",errstr,"x");

return;

}
v = (float *)malloc((inputs+1)*(hidden+1)*sf); /+ v */
if (v)

{

printf (" s\"\n" errstr,"v");

return;

}
z_in = (fleat *)malloc((hidden+1)#*sf); /* z_in */
if ('z_in)

{

printf ("Y%s%s\"\n",errstr,"z_in"

return;

}
z = (float #*)malloc{((hidden+1)x*sf); /x oz */
if ('z)

{

printf(“%s¥%s\"\n", errstr,”z"};

return;

}
w = (float *)malloc((hiddentl1)*(outputs+1)*sf); /* w */
if (hw)

{

printf ("%s%s\"\n",errstr,"u");

return;

}
y_in = (float *)malloc{(outputs+L)*sf); /¥ y_in */
if ('y_in)

{

printf("%shs\"\n",errstr,"y_in");

return;

}
y = (float *)malloc((outputs+l)*sf); /* y */
if (y)

{

printf(“%4s¥%s\"\n",errstr,"y");

return;

}
yy = (float *)malloc((outputs+1)*sf); /*yy */
if (tyy)

{

printf ("%s%s\"\n",errstr,"yy");

return;

}
t = (float *)malloc{{outputs+1)*sf); /x ot */
if (1t)

{

printf ("is%s\"\n",errstr, t");

return;

}
delta_in_j = (float #*)malloc{(hidden+1)*sf); /* delta_in_j */
if ('delta_in_j)

{

printf {"¥%s%s\"\n",errstr,"delta_in_j"};

return;

}
delta_j = (float *)malloc{(hidden+1)#*sf); /* delta_j */

if ('delta_j)
{
printf ("%s%s\"\n",errstr,"delta_j");
return;

151



}

delta_k = (float *)malloc((outputs+1)*sf);
if ('delta_k)
{
printf (“%s%s\"\n",errstr,"delta_k");
return;

}

del_v = (float *)malloc((inputs+1)*(hidden+1)*sf);

if ('del_v)

printf("%s%s\"\n",errstr,"del_v");
return;

}

del_w = (float *)malloc((hidden+1)*(outputs+1)*sf);

if ('del_w)
{
printf ("4s%s\"\n",errstr,"del_w");
return;

}

f_v = (float *)malloc((inputs+1)*(hidden+1)*sf);

if (M. v)
{
printf ("%
return;

}

is\"\n" ,errstr,"f_v");

e_v = (float *)malloc((inputs+1)*(hidden+1)*sf);

if (le_v)
{
printf ("%
return;

}

is\"\n",errstr,”"e v");

c_v = (float *)malloc{(inputs+1)=(hidden+1)*sf);

if (lc_v)
{
printf ("%s%s\"\n" ,errstr,"c_v");
return;

}

f_w = (float *)malloc((hidden+1)*{outputs+i)*sf};

if (M w)
{
printf ("%
return;

¥

Ls\"\n" ,errstr,"f_w");

e_w = (float *)malloc((hidden+1)*{outputs+1)*sf);

if (le_w)
{
printf("%s%s\"\n",errstr,"e_w");
return;

}

c_w = (float *)malloc((hidden+1)*(outputs+i}*sf);

if (te_w)
{
printf("%s%s\“\n",errstr,"c_u"};
return;

}

p = (float *)malloc((outputs+1)*sf);
if ('p)
{
printf ("%4s%s\"\n",errstr,"p");
return;

¥

q = (float =)malloc{(hidden+1}*sf};
if (1q)
{
printf ("%s%s\"\n",errstr,"q");
return;

}

target = (float *)malloc({outputs+1}*sf);

delta_k

/*

/¥

/*

Je

/*

/*

/%

del _v

del_w

o
<

target

=/

*/

*/

x/

*/

*/

*/

*/

*/

*/

*/

*/

152



if (Ytarget)
{
printf("
return;

¥

printf(" Memory successfully allocated.\n"); /*

s\"\n",errstr,"target");

successful if we got here */

/* Now calculate how much memory we’ve used for the dynamically allocated */

/* arrays, and print the result. */
/ ---= /
mem = inputs+i; /* arr of size "inputs" */
mem += 5% (inputs+1}*(hidden+1); /* arr of size “"inputs * hidden" */
mem += 5*(hidden+1}; /* arr of size "hidden® */
mem += 5*(hidden+1)*(outputs+1); /* arr of size "hidden * outputs"x/
mem += 7*(outputs+1); /* arr of size "outputs” */
mem *= sf; /* convert to bytes */
printf (" %0.01lf bytes ",mem); /* print memory used in bytes */
if (mem < 1.048576e6) /* print memory used in Kb */

printf ("(%0.2f Kb) used.\n",

mem/1024.0);

else /* print memory used in Mb */

printf ("(%0.2f Mb) used.\n",

mem/1.048576e6) ;

}
/RAkA K hhddd KA KK KKK */
/* analyze() */
/ AR A AN FH A AN /
void analyze(void)
{
int sf; /* size of float */
int ss;
static char errstr[] = /* error string */

" Error allocating memory for \
short i, j;
float n;
short struct_num;
float delta;
float *sum2;
float *min;
float *max;
short *n_min;
short *n_max;
float *training_struct;
float rms_final;
float distance, min_distance, temp;

e

if ((trnfp=fopen (env_value [TRAINING],"r"))==NULL) /=
{

printf(" Cannot open file %s\n",
env_value [TRAINING]) ;
return;

}

fgets (line, LINESIZE, trnfp);
sscanf (line,"%1d", &inputs);

sprintf (env_value [INPUTS],"%1d", inputs);

fgets {(line, LINESIZE, trnfp);
sscanf (line,"%1d", &outputs);

sprintf (env_value [OUTPUTS],"%1d" ,outputs);

fgets (line, LINESIZE, trnfp);

sscanf (line,"%1d", &structures);

sprintf(env_value [STRUCTURES], 414",
structures) ;

load_weights();

/*

/*

/%

read

read

read

load

open input file */

in number of input nodes */

in number of output nodes*/

in number of structures */

network weights */

153



/* find size of float
/* find size of short

sf = sizeof(float};
ss = sizeof(short);

sum2 = (float *)malloc{(outputs)*sf);
if (!sum2)
{
printf("%s%s\"\n",errstr,"sum");
return;

¥

min = (float *)malloc((outputs)*sf);

if ('min)
{
printf(
return;

}

%s\"\n",errstr,"min");

max = (float *)malloc({outputs)*sf);
if ('max)
{
printf ("%
return;

}

s\"\n",errstr,"max");

n_min = (short *)malloc((outpnts)*ss);
if ('n_min)

printf("%s%s\"\n" errstr,"n_min");
return;

¥

n_max = (short *)malloc((outputs)*ss);

if ('n_max)
{
printf ("
return;

}

Ys\“\n",crrstr,"n_max");

training_struct = (float *)malloc((structures*outputs)*sf);
if (ltraining_struct)
{
printf ("
return;

}

Ys\"\n",errstr,"training_struct");

for (i=0; i<structures; i++)
{
for (j=0; j<inputs; j++)
fgets (line, LINESIZE, trafp);

for (j=0; j<outputs; j++)
fgets (line, LINESIZE, trnfp);

sscanf (line, "%e\n", &temp);
TRAINING_STRUCT(i,)) = temp;

¥
}
fclose(trnfp);
n = 0.0;

for (i=0; i<outputs; i++)
{
*(sum2+i) = 0.0;
*{min+i) = INFINITY;
*(max+i) = 0.0;
*(n_min) = 0,
*(n_max) = 0;

}

if ((anlinfp=fopen(env_value [ANLINFILE],"r" )==NULL) /* open input file

{

printf(" Cannot open file %s\n",
env_value [ANLINFILE]D);

return;

}

if((anloutfp:fopen(env,value[ANLGUTFILE],”u“))::NULL) /* open output file

{

*/
*/

*/

*/

154



printf{(" Cannot open file Y%s\n",
env_value (ANLOUTFILE]};
return;

}

struct_num = O;

do {
fgets (line, LINESIZE, anlinfp);
line[strlen(line)-1] = ’\0’;

if (feof(anlinfp))
break;

1f ((testfp=fopen(line,"r"))==NULL)

{

printf(" Cannot open file %s\n",
line);

return;

}

for (i=0; i<3; i++)
fgets (line, LINESIZE, testfp);

for (i=1; i<=inputs; i++)
{
fgets (line, LINESIZE, testfp);
sscanf (line,"%e\n",x+i);

}

for (i=1; i<=outputs; i++)
{
fgets (line, LINESIZE, testfp);
sscanf (line,"%f\n",target+i);

}
fclose(testfp);
network(0);

for (i=1; i<=outputs; i++)
YY(i) = (Y(i)-by[il)/ay[i];

fprintf (anloutfp, "\nTest %d:\n", struct_

if (error >= 1.0e-6)

fprintf (anloutfp,"\n Error = Y%f\n",
else

fprintf (anloutfp,"\n Frror = %e\n",

fprintf (anloutfp," Target outputs:\n");
for (i=1; i<=outputs; i++)
fprintf (anloutfp," Af\n" , TARGET (i)
fprintf (anloutfp,” Network-computed out
for (i=1; i<=outputs; i++)
fprintf (anloutfp,” AE\n",¥YY(i));
for (i=0; i<outputs; i++)
{
delta = TARGET(i+1) - YY(i+1);
#(sum2+i) += delta * delta;
if (fabs(delta) < #(min+i))

*(min+i)

= fabs(delta);
*(n_min+i) =

struct_num;

if (fabs(delta) > *(max+i))
{
*(max+i) = fabs(delta);
*#(n_max+i) = struct_num;
¥
rms = 0.0;

for (i=1; i<=outputs; 1++)

/* lop off final newline char */
/* open input file */
/* read & discard header lines */
/* get points of leed i(v) curve */
/* get target outputs */
/* Tan the network w/o teaching */
/* un-scale network output */
num)

error); /* print error in f format
error);  /x print error in e format

/* print expected outputs

)i

*/

*/

*/

puts:\n");/* print network-computed outputs*/

/* compute rms error

rms += (YY(i)}-TARGET(i))*(YY(i)-TARGET(i));

rms = sqrt(rms/outputs);

fprintf (anloutfp," RMS error = %f\n", rms);

/* print rms error

*/

*/

155



min_distance = INFINITY;
for (i=0; i<structures; i++)

distance = 0.0;
for (j=0; j<outputs; j++)

temp = TARGET(j+1) - TRAINING _STRUCT(i,]j);
distance += temp*temp;
+
distance = sqrt(distance);
if (distance < min_distance)
min_distance = distance;

}

fprintf (anloutfp," Distance to nearest training point = %f\n",
min_distance) ; /* print distance */

n++;
struct_num++;

} while (!feof(anlinfp));
fprintf(anloutfp, "\n\nFinal results:\n\n");
for (i=0; i<outputs; i++)

{

rms_final = sqrt(*(sum2+i)/n);

fprintf(anloutfp,“Output %d: Minimum error = %f (at structure %d)\n",

fprintf (anloutfp," Maximum error = %f (at structure %d\n",
fprintf (anloutfp,” AMS error = Y%f\n\n", rms_final);
}

free (training struct);
free (n_max);

free (n_min);

free (max);

free (min);

free (sum2);

fclose (anlinfp);
fclose (anloutfp);

¥

i, *(minti), *(n_min+i));
*(max+1), *(n_max+i));

/«v*t**xttxztsxxtx**x****vta*xtt;xttxxxt***x»x***t****:t*xxt*xtt;*xtt**x::x*tt/

/% ask()

*/

/'*tt"t*#*‘***t****»n‘*'**l;!****t&*******v!tt**vtt!*tt**'t#x*‘tt#tk**tt****x/

void ask(veid)

{

if ((testfp=fopen(env_value[SINGLE],"r"))==NULL) /% open ’single’ file */
{
printf(" Cannot open file %s\n",
env_value[SINGLE]);
return;
}
for (i=0; i<3; i++) /* read & discard header lines *x/
fgets (line, LINESIZE, testfp);
for (i=1; i<=inputs; i++) /* get points of leed i(v) curve »/
{
fgets (line, LINESIZE, testfp);
sscanf (line,"Ve\n",x+i);
for (i=1; i<=outputs; i++) /* get target outputs */
{
fgets (line, LINESIZE, testfip);
sscanf (line,"%f\n" target+i);
}
network(0); /* run the network w/o teaching =/

156



for (i=1; i<=outputs; i++)

YY(i) = (Y(i)-bylil)/ayl[il; /* un-scale network output */
if (error >= 1.0e-6)

printf (" Error = %f\n", error); /* print error in f format */
else

printf (" Error = %e\n", error); /* print error in e format */
printf (" Target outputs:\n"); /* print expected outputs */
for (i=1; i<=outputs; i++)

printf (" %f\n" , TARGET (1)) ;
printf (" Network-computed outputs:\n"); /* print network-computed outputs*/
for (i=1; i<=outputs; i++)

printf (" %f\n",¥YY(1));
rms = 0.0; /* compute rms error */
for (i=1; i<=outputs; i++)

rms += (YY(i)-TARGET (i))*(YY(1i)-TARGET(i));
rms = sqrt(rms/outputs);
printf (" BRMS error = %f\n", rms); /* print rms error */
}

/R ok 3k ok Ko R o R R oK S s o o o R o R R KK K K K KR R SR KK S KKK KK K K K R KKK Sk KK K

/* debeam()

*/

SREERE R koK ank ERokK

void debeam(void)

{

long i, j, k; /* loop counters
char str[200];

char str2[4];

long beam_pts;

FILE *infp, **beamfpp;

/* open all files
/ — _

*/

*/

beamfpp = (FILE **)malloc(beams*sizeof (FILE *));

if (beamfpp == NULL)
{
printf (" Error allocating beam file pointers\n");
return;

}

i1f ({infp = fopen(env_value(FORMATTED],"rc")

printf (* Error opening file ¥%s.\n"
env_value [FORMATTED]) ;
return;

¥

for (i=0; i<beams; i++)
{
strepy (str,"beam.");
sprintf{str2,"%03d",i);
strcat(str,str2);
if ((*(beamfpp+i)=fopen(str,“w"))==NULL)
{

printf (" Error opening file %s\n",
str);

return;

}

fgets(str, 200, infp); /* number of inputs
inputs = atoi(str); /* copy to "inputs" env variable

*/
—x/

=/
*/

157



stristrlen(str)-11 = '\0’; /* remove final newline */
strepy (env_value[INPUTS],str); /* copy to env var string */
beam_pts = inputs / beams; /* find number of points per beam */
sprintf (str,"%d\n", beam_pts);
for (i=0; i<beams; i++)
fputs(str, *(beamfpp+i)); /% copy to "beam.xxx" files */
fgets(str, 200, inip); /* number of outputs x/
for (i=0; i<beams; i++)
fputs(str, *(beamfpp+i)); /* copy to "beam.xxx" files */
outputs = atoi(str); /* copy to "outputs" env variable */
strstrlen(str)-11 = ’\0’; /* remove final newline */
strepy (env_value [OUTPUTS] ,str); /% copy to env var string */
fgets(str, 200, infp); /* number of structures */
for (i=0; i<beams; i++)
fputs(str, *(beamfpp+i)); /* copy to "beam.xxx" files */
structures = atoi(str); /% copy to "structures" env var  */
stristrlen(str)-11 = ’\0’; /* remove final newline */
strcpy (env_value(STRUCTURES],str); /% copy to env var string */
/ ---= /
/* For each structure, read in each beam and copy to the appropriate */
/% beam.xxx file. Then copy the ocutputs to each beam.xxx file. */
/ - -x/
for (k=0; k<structures; k++)
{
for (i= i<beams; i++)
for (j=0; j<beam_pts; j++)
{
fgets(str, 200, infp);
fputs(str, *(beamfpp+i));
}
for (i=0; i<ontputs; i++)
{
fgets(str, 200, infp);
for (j=0; j<beams; j++)
fputs(str, *(beamfpp+j));
}
}
/ - - B aainieinid */
/* close all files */
e */

fclose (infp);
for (i=0; i<beams; i++}
fclose(*(beamfpp+i));

SRR AOR KA K KKK R ROK K K KR R KKK KRR KKK R K KOR KRR KKK R XK R KK

/* display_weight()

R

*/

/ omx

void display_weight(void)

{

int i, j;

i = atoi(emdstrl2]);
j = atoi(cmdstr{31);

if (!stremp(emdstr(1],"v"))
printf(" v(%d,%d) = %f\n"
i, 3, V(,3));

else if (!strcmp(cemdstr(1],"w"))
printf(* w(%d,%d) = %f\n"
i, j, Wi,

/* indices
/* convert ist index
/* convert 2nd index

/¥ v - input-to-hidden weight

/* w ~ hidden-to-output weight

*/

*/

*/

*/

*/

*/

158



159

else /* oops — meed to enter v or w */
{
printf (" Syntax: dw viw i j\n"); /* print error message */
printf(" v  for input-to-hidden weight\n");
printf(" w  for hidden-to-output weight\n")
printf(* 1i,j are weight indices\n");
3
}
/ Aok ok ok koK FoAAK koK AR OR Rk /
/* dump_weights() */
/ — P—
void dump_weights(void)
{
int i, j;

load_weights(); /* load network weights

if ((dumpfp=fopen(env_value[DUMPFILE],"w"}}==NULL) /* open output file */
{

printf(" Cannot open file %s\n",
env_value [DUMPFILE]};

return;

}

for (i=0; i<=inputs; i++)
for (j=0; j<=hidden; j++)

*/

fprintf (dumpfp," v(%d,%d) = %4f\n",
i, 3, Vi,

for (i= i<=hidden; i++)

for (j=0; j<=outputs; j++)

fprintf (dumpip,” w(4d.%d) = %f\n",
i, 3. w(i, 1),

fclose (dumpfp);
}
/ - L
/* help() */
/ B R AR A KKK /
void help(void)
{
char strl16]; /* str to hold help parameter */
char str80[LINESIZE+L]; /* holds line from help file */
short found; /* help file section found flag =/
FILE *fp; /* help file pointer */
if (Istremp(emdstr[1],"")) /* if no arguments given.. */

strcpy(cmdstr[1],"general®); /* then set to show general help */
strcpy (str,"*¥*"); /* form help file section header */
strcat{str,cmdstri{1l); /* (format: ***cmdname) */
strcat(str,"\n"); /* add \n since fgets gives a \n */
if ((fp=fopen(env_value[HELPFILE],"r"})==NULL) /* open help file */

{

printf(* Help file %s not found.\n", /* if help file not found.. */

env_value [HELPFILE]); /% ..print error message.. */

return; /* ..and return */

}
found = 0; /#* init flag to ’not found’ */
do { /* read through the help file */

fgets(str80,LINESIZE,fp); /* read in one line */

if (('found) && (!strcmp(str,str80))) /* if help section found.. */

{



found = 1;
continue;
}
if (found)
{
if (str80[0]=="%")
break;
else
printf ("%

,str80);
}
} while (!feof(fp));

fclose(fp);

/*
/*

/%
/%
/%
/*

/*

/*

set 'found’ flag..
and skip to read next line

if help section was found..
..1f end of section..
..then stop printing
else in middle of section..
..s0 print help info

stop at end of help file

close help file

*/
*/

*/
*/
*/
*/
*/
*/

*/

e T PR P R T T T T T P aup

/* init() */
/******k******‘*********************** Lt ***“‘***/
void init(void)
i
char str(LINESIZE], /% leednet.ini input line */
char var[16]; /* environment variable */
char arg[LINESIZE]; /* value to set env variable */
FILE *fp; /* pointer for leednet.ini */
if ((fp=fopen("leednet.ini","r"))!=NULL) /* if leednet.ini exists.. */
{
do {
fgets(str LINESTZE, fp); /% read in line from leednet.ini =/
cp = str; /* point p to start of input str */
cq = var; /* point q to start of var name =*/
while (*cp==’ 7) /* skip past leading spaces «/
cpt;
while ((*cp)&&(*cp!=’ ’)&&(*cp!='=")) /* scan input until \O spc or = =*/
*cq++ = tolower (*cp++); /* copy characters to string */
*cq = ’\0’; /* terminate string when done */
if (var[0l==";") /* if this is a comment line. . */
continue; /* ..skip to read in next line =/
while ((*cp==’ ’) || (*cp==’=?)) /* skip over any spaces or =’ */
cpHt;
cq = arg; /* point q to start of arg stringx/
while((*cp)&&(*cp!=’ *)&k(*cp!=’\n’)) /* scan input until \0 spc or \n =/
*cq++ = tolower(¥cpt+); /* copy characters to string */
*cq = '\0’; /* terminate string when dome */
for (i=0; i<ENVIRONMENT; i++) /% check against env var list */
if (!stremp{var,env_var[il)) /% if this var found in list.. */
{
strcpy(env_valuefi},arg); /% ..copy its value to env_value */
break; /% ..and stop search */
}
if (Istrcmp{var,"scale"))
{
strepy (cmdstrit), arg);
while (xcp==’ ) /* skip over any spaces or ’'=’ */
cptt;
cq = kemdstr [2]1[0];
while((*cp)&&(*cp!=’ *)&k(¥cp'="\n’))
*cq++ = tolower (*cp++);
*cqg = ’\0’;
while (¥cp==’ 7) /* skip over any spaces or ’=’ */

cpHt;

160



cq = &cmdstr[3]1[0];

while( (*cp)&&{(*cp!=’ *)&k(*cp!='\n’))
*cq++ = tolower (*cp++);
*cq = '\0’;
scale(0);
}
} while ('feof(fp)); /* repeat to end of leednet.ini */
fclose(fp); /* close leednet.ini %/
load_env(); /* load environmental variables =*/
}
/ oKk HAkK wrkrk /
/* load_env() */
/ REad Riidd wkkx k)
void load_env{void) /* load envirommental variables */
{
inputs = atoi(env_value[INPUTS]); /* conv number of input nodes */
hidden = atoi(env_value[HIDDEN]); /* conv number of hidden nodes */
outputs = atoi(env_value[DUTPUTS]); /% conv number of output nodes  */
function = atoi{env_value [FUNCTION]) ; /% conv data conv func number */
epochs = atoi (env_value[EPOCHS]) ; /* conv number of epochs to teach¥/
delprt = atoi(env_value[DELPRT]); /* conv num of epochs to prt msg */
mu = atof (env_value[MU]); /* conv momentum rate */
kappa = atof (env_value (KAPPA]); /* conv amt to incr learning ratex/
phi = atof{env_value[PHII); /* conv factor to mult learn ratex/
theta = atof (env _value[THETA]); /¥ conv factor to ctrl avg period*/
seed = atoi(env_valuel[SEED]); /* conv rand num generator seed */
numpts = atoi(env_value[NUMPTS]); /* conv num pts in i(v) curve */
structures = atoi{env_value[STRUCTURES]); /* conv num structures in data  */
sepnum = atoi(env_value[SEPNUM]); /* conv structure num to extract */
skip = atoi(env_value[SKIP]); /% conv num of points to skip */
status = atoi(env_value[STATUS]); /% conv training status flag */
adaptive = atoi(env_value[ADAPTIVE]); /* conv adaptive learn rate flag */
pause = atoi(env_value(PAUSE]); /* conv training pause (epochs) */
beams = atoi(env_value[BEAMS]); /* conv num of beams in input */
errorlim = atof (env_value[ERRORLIMI]); /* conv training error limit */
delanalyze = atoi(env_value[DELANALYZE}); /* conv num of epochs to analyze */
resumeepoch = atoi(env_value[RESUMEEPOCH]); /* conv resume epoch number */
seedmult = atof (env_value [SEEDMULT]) ; /* conv random seed multiplier */
}
/ A AR AR KKK AAKA KA AR KK /
/* load_weights() */
/* AN A o R KKK o oK oK R K o R KK S SRR s K SR R ok oK K ek koK ok
void load_weights(void)
{
long i, j;
char wstr[LINESIZE];
FILE *wgtfp;
if ((wgtfp=fopen(env_value [WEIGHTFILE],"rb"}) /* open weight file */
{
printf (" Cannot open file %s\n"
env_value [WEIGHTFILE]);
return;
}
fread(&inputs, sizeof(long), 1, wgtfp); /* read num of input nodes */
fread(&hidden, sizeof (long), 1, wgtfp); /* read num of hidden nodes */
fread(&outputs, sizeof(long), 1, wgtfp); /* read num of output nodes */
sprintf (ustr,"%d", inputs); /* conv num inputs to string.. */
strepy (env_value [INPUTS],wstr); /* ..and copy to env_value */

161



sprintf (wstr,"%d", hidden); /* conv num hidden to string.. =/
strcpy (env_value [HIDDEN] ,wstr); /% ..and copy to env_value */
sprintf(wstr,"%d", outputs), /* conv num outputs to string.. %/
strcpy (env_value [QUTPUTS] ,wstr); /* ..and copy to env_value */
alloc(); /* allocate memory */
fread(v, sizeaf(float), /* read in v weights */
(inputs+1) *(hidden+1), wgtip);
fread(w, sizeof(float}, /* read in w weights */
(hidden+1)*(outputs+1), wgtfp);
fclose(wgtfp); /* close weight file */
/ Akk ARk KKKk ]
/*  memory() */
/TR kK KRR XA K e e L PR P S e e ys
void memory(void)
{
double mem;
if (!stremp(emdstr{i],”")) /* if no argument was given.. */
mem = inputs+il;
mem += 5x(inputs+1)*(hidden+1);
mem += 5*(hidden+1);
mem += 5% (hidden+1)*(outputs+1);
mem += 7x(outputs+l);
mem *= sizeof (float);
printf (" %0.01f bytes ",mem);
1f (mem < 1.048576e6)
printf ("(%0.2f Kb) used.\n“,
mem/1024.0);
else
printf ("(%0.2f Mb) used.\n",
mem/1.048576e6) ;
}
else /* mem inputs hidden outputs */
{
mem = atof (cmdstr[1]1)+1;
mem += 5x(atof (cmdstr(1])+1)+(atof (cmdstr[2])+1);
mem += b*(atof (cmdstr(2})+1);
mem += 5x(atof (cmdstri2])+1)*(atof (cmdstr[3])+1);
mem += T*(atof (cmdstr[3])+1);
mem *= sizeof (float);
printf (" %0.0lf bytes " mem);
if (mem < 1.048576e6)
printf ("(%0.21f Kb) would be needed.\n",
mem/1024.0);
else
printf ("(%0.21f Mb) would be needed.\n",
mem/1.048576e6) ;
}
}
/ Aok s R KK K */
/* merge() */

i R T F TR T T S T sy

void merge(void)

char str[200];

short ctr,

i;

FILE *infp, *outfp;

162



/ /
/* get name of output file and open it */
/ /
printf (" Enter name of output file: ");
fgets(str, 200, stdin);
stristrlen(str)-11 = ’\0’;
if ((outfp=fopen(str,”"w"))==NULL)
{
printf(* Error opening file %s.\n", str);
return;
}
/ /
/ /
ctr = 0;
strepy (str,"temp");
for (;;)
{
printf(" Enter name of data file: "};
fgets(str, 200, stdin);
strlstrlen(str)-1] = '\0’;
if (Ystremp(str,""))
break;
if ((infp=fopen(str, “r"))==NULL)
{
printf(" Error opening file %s.\n", str);
return;
¥
ctr++;
if (etr == 1) /* if this is the ist data file =*/
{
fgets(str, 200, infp); /* ..read num of input nodes */
fputs(str, outfp);
inputs = atoi{str);
stristrlen(str)-1] = ’\0’;
strcpy (env_value[INPUTS] ,str);
fgets(str, 200, infp); /* ..read num of output nodes */
fputs(str, outfp);
outputs = atoi(str);
str(strlen(str)-1]1 = ’\0’;
strcpy (env_value [OUTPUTS], str);
fgets(str, 200, infp); /* ..read num of structs in file */
structures = atoi(str);
sprintf (str,"%d\n",structures);
fputs(str, outfp);
stristrlen(str)-11 = ’\0’;
strepy (env_value [STRUCTURES] ,str) ;
else /* if this is not the 1st file.. */
{
fgets(str, 200, infp); /* ..then skip 3 header lines */
fgets(str, 200, infp);
fgets(str, 200, infp);
}
for (i=0; i<(inputs+outputs)*structures;
14+)
{
fgets(str, 200, infp); /* append input file.. */
fputs(str, outfp); /* ..to end of output file */
+
fclose(infp); /* close each input file */

}

printf(" %d files merged.\n", ctr)

163



fclose{outfp); /* close output file */
¥

/% . am—t
/% net_sigmoid() - sigmoid function */
/ - /
float net_sigmoid(float x)

{

return 1.0/(1.0+exp{-x));

}

/ /
/* net_update_weights() */
/3R R s R s R K K Sk KRR R KR KRR kKKK Aokok Kk ok Kok ok f
void net_update_weights(void)

{

/ == /
/* adjust weights */
/ -/
for (j=0; j<=hidden; j++) /* adjust w weights */

for (k=1; k<=outputs; kt++)
{
if (adaptive)

if (DEL_W(j,k)*F_W(j,k) > 0.0)
E_W(j,k) += kappa;

else
E_W(j,k) *= phi;

F_W(j,k) = (1.0-theta)*DEL_W(j,k) *

theta*F_W(j,k};

/* using adaptive learning rates */

C_W(j,k) = —(1.0-m)*E_W(j,k)*DEL_W(j,k) +

mu*C_W(j,k);
W(j,k) += C_W(j,k);
+
else

W(j,k) -= kappa*DEL_W(j,k);
}

for (i=0; i<=inputs; i++)
for (j=1; j<=hidden; j++)

if (adaptive)

/* using constant learning rate x*/

/* adjust v weights */

/* using adaptive learning rates */

{
if (DEL_V(i,j)*F_V(i,j) > 0.0)
E_V(i,j) += kappa;
else
E_V(i,j) *= phi;
F_V(i,j) = (1.0-theta)*DEL_V(i,j) +
theta*F_V(i,j);
C_V(i,§) = ~(1.0-mu)*E_V{i,j)*DEL_V(i,j) +
muxC_V(i,j);
V(i,j) += C_V(i,j);
else /* using constant learning rate */
V(i,j) -= kappa*DEL_V(i,j);
}
/ e
/* net_zero_dels() */
/ /

void net_zero_dels(void)

164



{
for (i=0; i<=inputs; i++)
for (j=0; j<=hidden; j++)
DEL_V(i,j) = 0.0;

for (j=0; j<=hidden; j++)
for (k=0; k<=outputs; k++)
DEL_W(j,k) = 0.0;

}
/ PRS- oxxxnran /
/* network() - run the network */

/R A AR AR AR A A AN AAAK KRR E

void network(ant learn)

SR OB o S  k  K R R OR K R ko /

{

e */
/* use neural network to calculate sum, and find error x/
2 g «/

for (j=1; j<=hidden; j++)

{

Z_ING) = V(0,1);

for (i=1; i<=inputs; i++)
Z_IN(j) += X(1) * V(i,j);

Z(3j) = net_sigmoid(Z_IN(j));

}

for (k=1; k<=outputs; k++)
{
Y_IN(k) = W(0,%);
for (j=1; j<=hidden; j++)
Y_IN(k) += Z(3)*W(j,k);
Y(k) = net_sigmoid(Y IN(k));
¥

for (i=1; i<=outputs; 1++)

/

*

/%
/*

z[j] = sum of inputs*weights =*/
init sum to bias weight v[0j] */

compute sum for neuron z[j] */

save sigmoid-limited z[j] */
ylkl = sum of inputs*weights */
init ontput sum to bias weightx*/

compute sum for neuron ylk] */
save sigmoid-limited yl[k]} */

T(i) = TARGET(1)*ay(il+bylil; /* set scaled target valucs */
for (k=1; k<= outputs; k++)
error += (Y(k)-T(k))*(Y(k)-T(k));
if (!'learn) /* if not learning.. */
return; /* ..then return */
for (j=0; j<=hidden; j++) /* zero the qll array */
Q¢j) = 0.0;
/ . /
/* back-propagate error */
ittt */

for (k=1; k<=outputs; k++)
{

P(k) = (Y(R)-T(k)) * Y(k) * (1.0-Y(k));

DEL_W(Q,k) += P(k);
for (j=1; j<=hidden; j++)
{
DEL_W(j.k) += P(k) * 2(j);
Q(3) += P(k) * W(j,k);
}
}

for (j=1; j<=hidden; j++)

Q) *= Z(j) * (1.0-Z(3));

DEL_V(0,j) += Q(j);

for (i=1; i<=inputs; i++)
DEL_V(i,j) += Q(3) * X(i)

}

165



/ T

/* plot_data()

/

void plot_data(void)

{

long pts;

float energy, energyO;
float del_energy;
float max_intensity;
long max_struct;

long max_beam;

float max_energy;
float intensity;

char str[LINESIZE];
char str2{5]1;

long i, j, k;

FILE *fmtfp, *structfp;

if ((fmtfp=fopen(env_value [FORMATTED],"r"))==NULL) /* open formatted file

printf(" Cannot open file %s\n",
env_value [FORMATTED]);
return;

}

printf (" Starting energy (eV): “);
fgets(str, LINESIZE, stdin);
sscanf (str,"%f" ,kenergy0);

printf (" Energy step (eV): ");
fgets(str, LINESIZE, stdin);
sscanf (str,"%f",&del _energy);

fgets(str, LINESIZE, fmtfp);
sscanf (str, "%d", &inputs);
str(strlen(str)-11 = '\0’;
strepy (env_value [INPUTST, str) ;

fgets(str, LINESIZE, fmtfp);
sscanf (str, "%d", &outputs);
strstrlen(str)-11 = '\0’;
strcpy (env_value [OUTPUTS],str) ;

fgets(str, LINESIZE, fmtfp);
sscanf (str, "%d", &structures);
strlstrlen(str)-1] = ’\0’;

strcpy (env_value[STRUCTURES],str);

pts = inputs / beams;
max_intensity = 0.0;

for (i=0; i<structures; i++)
{
strcpy(str,“struct.”);
sprintf (str2,"%034",1);
strcat(str,str2);

if ((structfp=fopen(str,"w"))==NULL)

{

printf (" Error opening file %s\n"

str);
return;

}
fprintf (structfp,"%03d\n", i);
for (j=0; j<beams; j++)

{

energy = energy0;

for (k=0; k<pts; kt++)
{

fprintf{structfp,"%8.2f" ,energy);

fgets(str, LINESIZE, fmtfp);

/* read in inputs

/* copy to "inputs" env var
/* remove final newstr

/* copy to env var string

/* read in outputs

/* copy to “outputs" env var
/* remove final newstr

/* copy to env var string

/* read in number of structures
/¥ copy to "structures” env var
/* remove final newstr

/* copy to env var string

/* find num of points per beam

/* print structure number

/% print energy to file
/* read in next intensity

*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

*/
*/

166



fprintf(structfp,"” %hs",str); /* print intensity to file */
P P P Yy

sscanf (str,"%f",&intensity);
if (intensity > max_intensity)
{
max_intensity = intemsity;
max_struct = 1;
max_beam = j;
max_energy = energyO
+ kxdel_energy;

eneigy += del_energy; /* find next energy value */
}
for (k=0; k<outputs; k++)
fgets(str, LINESIZE, fmtfp); /* read in outputs & discard */
fclose(structfp);

¥
printf (" Max intensity = %4f *
"in structure %ld, beam %ld,
"at %f eV\n",
max_intensity, max_struct,
max_beam, max_energy);

}
/ — . Pa—y;
/*  prune() */
Jxkornn . P—— */
void prune(void)
{
/* e */
/* local variable declarations */
/ - ——--xf
long i, j, k; /* loop counters */
long newinputs;
char str[200];
FILE *infp, *outfp;
/ == R /
/* open all files */
/ */
if ((infp=fopen(env_value [FORMATTEDY,"r"))==NULL)

printf (" Error opening file %s\n",

env_value [FORMATTED] ) ;

return;

}
if ((outfp=fopen(env_value[PRUNED],"w"))==NULL)

printf (" Error opening file %s\n",

env_value [PRUNED]);

return;

+
/ /
/* read the number of input and output nodes from the input file */
/ /
fgets(str,200,infp);
inputs = atoi(str);
fgets(str,200,infp);
outputs = atoi(str);
rewind(infp);
/ /
/* find new number of inputs */

167



/ — -- /
newinputs = 0;
for (j=0; j<inputs; j++)

if ((§ % (skip+l1)) == 0)

newinputs++;
}
S m o == Rt /
/* do stuff */
/ - /

fgets(str,200,infp);
sprintf (str,"%1d\n" ,newinputs);
fputs(str,outfp);

fgets(str,200,infp);
fputs(str,outfp);

fgets(str,200,infp);
fputs(str,outfp);

for (i=0; i<structures; i++)
{
for (j=0; j<inputs; j++)
{
fgets(str,200,infp);
if ((j % (skip+1)) == 0)
fputs(str,outfp);
¥

for (j=0; j<outputs; j++)

fgets(str,200,infp);
fputs(str,outfp);

¥
}
/ e - ST /
/% update new number of inputs & outputs */
S - /
inputs = newinputs;
sprintf (env_value [INPUTS),"%1d",inputs);
sprintf(env_value [OUTPUTS],"%1d",outputs);
/ ST ommomesmme oo - - /
/* close all files */
/ /
fclose (infp);
fclose (outfp);
}
S P ——
/* rand1() - return random float in range 0-1 */
A Ak AAK KA KK AR KK Py
float randi(void) /* random float between 0-1 =/

return ((float ) rand())/{({(float ) RAND_MAX);
}

/% P [ AR KK /

168



/* rand2() - return random int in range 1-n */
/% o - - /

int rand2{int n)

{

n = (float ) n*rand1() + 1.0; /* select random n, 1 to NMAX */
return (n);

}

VAT % *rAk EREEL Y
/* rand3() -~ return random float in range l-n */
/ P wxk I ek */

float rand3(int n)

{

return (n*(((float )} rand())/((float ) RAND_MAX}));

}

A AR AR A ROR R AR AK AR K KR MR R i AR RN KA KKK KK AR
/* rand4() - return random float in range -1 - +1 */
/ BT LEdd Aok ok K K A KK EEL TS Aok f

float rand4(void)

{

return (2.0%(((float ) rand()}/({float ) RAND_MAX)) - 1.0);
}

A A A KRN AR A AR KR R KO8 K 3 o KR R HOK A KRR R Yk K

/* randomiz() «/
/230K o R oo o R K K KoK o Sk oK KK o K KK KK K ok o ETE TS Y *kknn/

void randomiz(void)

{
encoded_time = time(NULL); /* get encoded system time */
systime = localtime(&encoded_time); /* format it as local time «/

seed = (int) ((10000.0/60.0)*systime->tm_sec /* create a random seed from timex/
+ (100.0/60.0)*systime->tm_min)
* (RAND_MAX/10000.0);

sprintf (env_value[SEED],"%d",seed); /* set env variable ’seed’ */
}

/ —_— T—— —
/* rebeam() */
/x e ok «/

void rebeam(void)

{

long i, j, k; /* loop counters x/
char str[200];

char str2[4];

long beam_pts;

FILE *outfp, *r*beamfpp;

/R o e e -- et */
/* open all files */
/ /

beamfpp = (FILE **)malloc{beams*sizeof (FILE ¥));
if (beamfpp == NULL)
{

printf(" Error allocating beam file pointers\n");
return;

¥

169



if ((outfp = fopen{env_value[BEAMOUTFILE],"w"

{

pri

ret

}

for (i
{
pri
fge
if

str

ntf (" Error opening file %s.\n",
env_value [BEAMOUTFILE]) ;
urn;

=0; i<beams; i++)

ntf(" Enter name of beam file %d:

ts(str, 200, stdin);
((str[01=="\0") || (str[0]=="\n’)
(str[0]==’\r’))

break;

[strlen(str)-1] = ’\0’;

"

if ((*(beamfpp+i)=fopen(str,"r"))==NULL)

beams
sprint

{

printf (* Error opening file %s\n"

str);
return;

}

= i;
£ (env_value [BEAMS], "%1d" ,beams);

==NULL)

i+1);

/*

copy to env var string */

R /

/*

/* copy over the first three header lines

fgets(str, 200, *beamfpp); /* number of inputs from 1st beam */
beam_pts = atoi(str); /* find number of points per beam */
inputs = beam_pts * beams; /* find total number of inputs */
sprintf (env_value [INPUTS],"%1d",inputs); /* copy inputs to env var string =*/
sprintf (str,"%d\n", inputs); /% convert inputs to string */
fputs(str, outfp); /* copy inputs to output file */
fgets(str, 200, *beamfpp); /* number of outputs */
fputs(str, outfp); /* copy to output file */
outputs = atoi(str); /* copy to "outputs" env variable */
strstrlen{str)-11 = '\0’; /* remove final newline */
strcpy (env_value [OUTPUTS],str); /* copy to env var string */
fgets(str, 200, xbeamfpp); /* number of structures */
fputs(str, outfp); /% copy to output file */
structures = atoi(str); /* copy to "structures" env var */
stristrlen(str)~11 = ’\0’; /* remove final newline */
strcpy (env_value [STRUCTURES]),str}; /* copy to env var string */
for (i=1; i<beams; i++) /% for all beams after the 1st.. x/

{

fgets(str, 200, *{beamfpp+i)); /* ..read past the 3 header lines */

fgets(str, 200, *(beamfpp+i));

fgets(str, 200, *(beamfpp+i});

}
/ =%/
/* For each structure, read in each beam and copy to the beam output file. */
/ /
for (k=0; k<structures; k++)

{

for (i=0; i<beams; i++)

for (j=0; j<beam_pts; j++)
{

fgets(str, 200, *(beamfpp+i));

fputs(str, outfp);

for (i=0; i<outputs; i++)

fgets(str, 200, *beamfpp);
fputs(str, outfp);
¥

170



/ /
/* close all files */
/ /
fclose (outfp);
for (i=0; i<beams; i++)

fclose(*(beamfpp+i));
}
/ A A KA A KKK Kk /
/* save_weights(} */
/ P— .
void save_weights(void}
{
long i, j;
FILE *wgtfp;
if ((wgtfp=fopen(env_value [WEIGHTFILE], "wb"))==NULL) /* open weight file */

{

printf(" Cannot open file %s\n",

env_value [WEIGHTFILE]);

return;

¥
furite(&inputs, sizeof(long), 1, wgtfp); /* write num of input nodes */
furite(khidden, sizeof(long), 1, wgtfp); /* write num of hidden nodes */
furite(&outputs, sizeof(long), 1, wgtfp); /* write num of output nodes */
furite(v, sizeof(float), /* write v weights */

(inputs+1)*(hidden+1), wgtfp);
fwrite(w, sizeof(float), /* write w weights */
(hidden+1)*(outputs+1), wgtfp);

fclose(wgtfp); /* close weight file */
}
/A A A A A A AR KA O AR K KK L xoxRn/
/* scale() */
/% PR PR p—
void scale(int verbose}
{
float ayt, byt; /* temp. values for ay & by */
float tmin, tmax;
fleat smin, smax;
float x;
char storeflag;
int nn, i;
if (!stremp(emdstr[1],"")} /* if no arguments were given.. */

{

printf(" Syntax: scale "

"Display scalings\n"};

printf (" scale n tmin tmax [smin smax] [n] "
"Calculate scalings\n");

printf (" scale n value o

“"Convert\n\n") ;

printf("Current scalings:\n\n");

for (i=1; i<SCALINGS; i++)

printf ("Ay[%d] = %Af\tBy[’d]l = %f\n",
i, ayfil, i, bylil);
return;

¥
nn = atoi{cmdstrl1l);

if ((nn<1) || (mn>=SCALINGS))

171



printf("Error: Scaling index must be in"
" the range 1-%d\n", SCALINGS-1);

return;

¥

i

N

(tstrcmp(emdstr[3],""))

{

x = atof(cmdstr[2]);

printf(" true -> scaled = %f\n"
ay[nnl*x + by[nn]);

printf(" scaled -> true = %f\n",
(x ~ bylnn]) / ay(nnl);

return;

+

tmin = atof (cmdstr[2]);
tmax = atof(cmdstr[31);

if (!stremp(cmdstr[51,""))
{
smin = 0.1;
smax = 0.9;
storeflag =
}

tolover(cmdstr[4] [0]};

else
{
smin = atof (cmdstr{31);
smax = atof (cmdstr([4]);
storeflag = tolower(cmdstr[61[0]1);
¥

ayt = (smax-smin)/(tmax-tmin);
byt = smin - ayt*tmin;

if (verbose)
printf (" Ay(%d] = AUf\tBy[%d]l = %f\u",
nn, ayt, nn, byt);

if (storeflag !'= ’n’)
{
ay(nn]l = ayt;
by{nn] = byt;

if (verbose)

/*
/*
/*
/%

/*

/%
/*

/*
J*

/*
/%

/*
/*

/*
/*

/%

/*

/%
/%

if only one argument given..
calc. scaled/unscaled values
convert argument to float
scale if x is true value

unscale if x is scaled value

convert given tmin to float
convert given tmax to float

if smin & smax not given..

smin defaults to 0.1
smax defaults to 0.0

smin & smax are given
convert given smin to float

convert given smax to float
get store flag

compute ay
compute by

print results

if store flag not set to ’n’.

store new ay
store new by

printf(” New values stored.\n"); /* say we stored new ay & by
}
¥
/ N
/* separate()
/l‘************l**********". A Ok LaE L kK

void separate(void)

{

long i, j, k;

char str[200];

FILE »infp, *sepl, *sep2;

/*

loop counters

/* —-== - = -
/* open all files

/* -

if ((infp = fopen(env_value {FORMATTED],"r"))==NULL)

{

printf (" Error opening formatted file \"%s\“.\n",

env_value [FORMATTED]) ;
return,

}

i

Y

printf (" Error opening file %s\n",
env_value [MISSING]);
return;

M

{(sepl=fopen(env_value[MISSING],"w"))==NULL)

=/
*/
*/
*/

*/

*/
*/

*/

*/
*/

*/
*/

=/
*/

*/
*/

*/

x/

*/
*/

*/

rex/
*/

wex/

*/

172



if ((sep2=fopen(env_value [SINGLE],"w"))==NULL)

printf (" Error opening file %s\n",
env_value[SINGLE]);

return;

}
/ /
/* copy over the first three header lines */

/

fgets(str, 200, infp); /* number of inputs */
fputs(str,sepl); /* copy to "missing” file */
fputs(str,sep2); /* copy to "single" file */
inputs = atoi(str); /* copy to "inputs" env variable */
stristrlen(str)-1] = ’\0’; /* remove final newline */
strepy (env_value [INPUTS],str); /* copy to env var string */
fgets(str, 200, infp); /* number of outputs */
fputs(str,sepl); /* copy to "missing" file */
fputs(str,sep2}; /* copy to "single" file */
outputs = atoi(str); /* copy to “"outputs" env variable */
strstrlen{str)-1]1 = ’\0’; /* remove final newline */
strcpy (env_value[OUTPUTS],str) ; /* copy to env var string */
fgets(str, 200, infp); /* number of structures */
structures = atoi(str) - 1; /* subtract one for missing struc */
sprintf(str,"%d\n",structures); /* copy to "structures" env var */
fputs(str,sepl); /* copy to "missing" file */
fputs("1\n",sep2); /* copy to "single" file */
stristrlen(str}-1] = '\0’; /* remove final newline */
strcpy (env_value [STRUCTURES] ,str); /* copy to env var string */
/*= -= - /
/¥ read in ({(inputs+toutputs)*sepnum) lines and copy them to the "big" */
/» file ("missing"). */
/K e T S oooo oo omo e /
for (i=0; i<(inputs+outputs)*sepnum; i++)

fgets(str, 200, infp);

fputs(str, sepl);

}
/ T oo s */
/* read in (inputs+outputs) lines and copy them to the "little" */
/* file ("single"). */
/ -*/
for (i=0; i<(inputs+outputs); i++)

{

fgets(str, 200, infp);

fputs(str, sep2);

}
/ -- --=- /

/* read in (inputs-outputs)*(structures-sepnum-1) lines and copy them to the */

/* "big" file (“missing"). */
/ /
for (i=0; i<(inputs+outputs)*(structures-sepnum-1); i++)

{

fgets(str, 200, infp};

fputs(str, sepl);

¥
/ /
/* close all files */
/ /

fclose (infp);
fclose (sepl);
fclose (sep2);

173



¥
/% *okAok EET Y LY /
/¥ set() */
/* K ek KoK ok KK KKK A KK */
void set(void)
{
char str[50];
short found = 0;
if ('stremp(emdstr[1],"")) /* if no argument was given.. */
{
for (i=0; i<ENVIRONMENT; i++) /* ..then print values of all.. */
{ /* ..enviromment variables */
strcpy (str,env_varlil);
strcat(str,"="});
strcat{str,env_valuelil);
printf (" %-30s",str);
if (i%2) /* if i is odd.. */
printf("\n"); /% ..print a newline */
¥
#if (ENVIRONMENT 7% 2) /* if total num of vars is odd.. */
printf ("\n"); /* ..print a newline «/
#endif
+
else
{
for (i=0; i<ENVIRONMENT; i++) /* check against env var list */
if (!stremp(cmdstri]l,env_var[il)) /* if this var found in list.. */
{
strepy (env_valuelil,cmdstr(2]); /* __copy its value to env_value */
found = 1;
break; /% ..and stop search */
}
if (tfound)
printf (" Variable \"%s\" not found\n",
emdstr[11);
load_env(); /* load environmental variables */
}
}
/* HHKHK e sk R KK A K oK K S o e o Ko KR K K kKR o /|
/* show_status() */
/ ok ok R EAAK EEEEETY Ak ANk [
void show_status(void)
{
char statline[100];
if ((statfp=fopen{env_value /* open status file */
[STATUSFILE],"r"))==NULL)
{
printf (" Cannot open file %s\n",
env_value{STATUSFILE]);
return;
}
fgets(statline, 100,statfp); /* read in one line.. */
printf(statline); /* . .and primt it */
fclose(statfip); /* close the status file */

}

174



/ /
/* train() */
/ — /
void train{void)
{
char ans{20]; /* yes/no answer to pause query */
/ -- /
/* set start epoch number */
/ /
if (resume_flag == 1)

start_epoch = resumeepoch;
else

start_epoch = 1;
/ /
/* open files & read number of input and output nodes */
/K oo */
if ((trnfp=fopen{env_value [TRAINING], "r"))==NULL) /* open training data file */

{

printf(" Cannot open file %s\n",

env_value [TRAINING]) ;

return;

}
if ((errfp=fopen(env_value[ERRORDAT], "w"))==NULL) /* open error output file */

{

printf(" Cannot open file %s\n"

env_value [ERRORDAT]) ;

return;

}
fgets (line, LINESIZE, trnfp);
sscanf (line,"%1d", &inputs); /* read in number of input nodes */
sprintf (env_value [INPUTS],"%1d",inputs);
fgets (line, LINESIZE, trnfp);
sscanf (line,"%1d", &outputs); /* read in number of output nodes*/
sprintf (env_value [OUTPUTS], "%1d",outputs);
fgets (line, LINESIZE, trnfp);
sscanf (line,"%1d", &structures); /* read in number of structures */
sprintf{env_value [STRUCTURES],"/%1d",

structures);

rewind(trnfp); /* rewind to start of file */
if (resume_flag == 1) /* if resuming a run.. */

load_weights(}); /* ..then load old weights */
else

alloc(); /* else allocate mem for network */
/ /
/* initialize */
/* */
/* N.B. Smith suggests the following for w weight initialization: */
/% if ((3%2 if j is even.. */
/% W(j,k) = 1.0; ..init w weight to +1 */
/% else if j is odd.. */
/* W(ji,k) - -1.0; ..init w weight to -1 */
/* but this doesn’t seem to work; dw command shows w weights all go to */
/¥ 0 or 1. */
/ /
srand(seed); /* init random number generator */
for (i=0; i<=inputs; i++) /* initialize v weights.. */

for (j=0; j<=hidden; j++)

if (resume_flag != 1)

175



V(i,j) = seedmult*randd(); /* ..to random values v[il[j] */
E_V(i,j) = kappa; /* init learning rate */
for (j=0; j<=hidden; j++) /* initialize w weights.. */
for (k=0; k<=outputs; kt++)
{
if (resume_flag != 1)
W(j,k)} = seedmult*rand4(); /% ..to random values wljlI[k] */
E_W(j,k) = kappa; /* init learning rate */
+
*/
/* teach the network to recognize leed i(v) patterns */
[rmm e ST e */
for (m=start_epoch; m<=epochs; m++) /% loop to teach the metwork */
{
fgets (line, LINESIZE, trnfp);
fgets (line, LINESIZE, trnfp);
fgets (line, LINESIZE, trnfp);
error = 0.0; /* init the error to 0 */
net_zero_dels(); /% zero del_vI] and del_w[) */
for (ex=1; ex<=structures; ex++)
{
for (i=1; i<=inputs; i++) /* get points of example */
{
fgets (line, LINESIZE, trnfp);
sscanf (line,"%e\n",x+i);
}
for (i=1; i<=outputs; i++)
{
fgets (line, LINESIZE, trnfp);
sscanf (line, "Je\n", target+i);
¥
network(1); /* run the network w/ teaching */
¥
net_update_weights(); /* update weights for this epoch */
error *= 0.5/(outputs*structures); /* calculate error for this epochx/
if ({m % delprt)==0) /* print msg every DELPRT epochs */
{
printf (" Fpochs: Y%1d\t”, m);
if (error >= 1.0e-6)
printf (“Error = %f\n", ecrror); /= print out error in f format */

else
printf ("Error = Ye\n", error); /* print out error in e format  */

if (!stremp(env_value[DEBUG],"on")) /% if debug mode is on. */

printf(" Outputs: ");

for (i=1; i<=outputs; 1++)
printf ("%e\t",Y(i));

printf("\n");

printf(" Un-scaled: ");
for (i=1; i<=outputs; i++)
printf (“AE\t", (Y(i)-by{il)/ay[il);
printf(“\n");
¥

if (status)

if ((statfp=fopen(env_value /* open status file */
[STATUSFILE],"w"))==NULL)
{ /* error opening file */
printf (" Cannot open file %s\n",
env_value[STATUSFILE]);
status = 0;

176



if

if

rew

printf ("

if (error
printf

else
printf

fclose (t

strcpy (env_value [STATUS],"0");

}
else /* file opened ok */
{
fprintf (statfp, /* print epoch num to stat file */
" Epochs: %1ld\t",m);
fprintf (statfp, /# print error to stat file */
“Error = %e\n",error);
fclose(statfp); /% close file so we can read it */
¥
¥
fprintf {(errfp,"%ld\t¥%e\n", /* send error to file */
m, error);
if ((pause>0) && ((m)pause)==0)) /% if pause>0 & time to pause.. */
{
printf{" Continue (y/n/r/e)? "}; /* ask whether to continue */
gets(ans); /* read in answer */
if (tolower(ans[0])=="n’) /* if we don’t continue.. */
break; /* ..then break out of big loop */
else if (tolower(ans[0])=='r’) /* if we’re to stop pausing.. */
pause = -1; /* ..turn off the pause flag */
else if (tolower(ans[0])=="e’)
printf(" panse=");
fgets(ans,10,stdin);
pause = atoi(ans);
ans[strlen(ans)-1] = ’\07; /* remove final newline */
strcpy (env_value[PAUSE] ,ans);
}
¥
((delanalyze '= -1) && ((m % delanalyze)==0))
sprintf(dafilename, "i%07d.wgt", m);
if ((danlfp=fopen(dafilename, /* open status file */
"wb"))==NULL)
{ /* error opening file */
printf(" Cannot open file %s\n",
"dafilename");
delanalyze = -1;
strepy (env_value [DELANALYZE],"-1");
¥
else /* file opened ok */
{
furite(&inputs, sizeof(long), 1, danlfp); /* urite num of input nodes
furite(&hidden, sizeof(long), 1, danlfp); /* write mm of hidden nodes
furite(&outputs, sizeof(long), 1, danlfp); /* write num of output nodes
furite(v, sizeof{(float), /* write v weights
(inputs+1)*(hidden+1), danlfp);
furite(w, sizeof(float), /* urite w weights
(hidden+1)* (outputs+1), danlfp);
fclose(danlfp); /% close file so we can read it =*/
¥
¥
(error < errorlim) /* if we’re below error limit.. =*/
break; /* then stop further processing =*/
ind(trnfp); /* go to start of example file  */
Network is trained!\n"); /* print message */
>= 1.0e-6)
(" Last error = %f\n", error); /* print last error in f format =/
(" Last error = %e\n", error); /* print last error in e format =*/
rnfp); /* close training data file */
/* close error data file */

fclose (errfp);

= end of file LEEDNET.C ==

*/
*/
*/

*/

*/

177



Appendix C

Listing of Program FORMATO1.C

/*

File FORMATO1.C

*/

/KRR AR KRR K KSR ROKOK R KK SRR K K K K KKK KKK AR R ]

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/%
/x
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/%

FORMATO1
This file contains the functions needed to format LEED I(V) data.

David G. Simpson

Department of Physics

University of Maryland, Baltimore County
Catonsville, Maryland

This file contains one function:

format01() Called by the LEEDNET “format" command. This function
re-formats the data in the file given by environmental
variable "original", and puts the formated data into a file
whose name is given by the environmental variable
"formatted". (original -> formatted)

Format of original data:

This data is for the Ni[50) Pd[50] (100) surface (fcc).
(See Derry, McVey, Rous, "Surface Science", v. 326, pp. 59-66 (1995).)

The original data for this function (file IV.DAT) appears in 11 columns
of floating-point numbers:

Quantity Units Columns Cycle order Range Step Pts
Energy eV 2- 7 4 30-348 eV 2 eV 160
d12 A 9 - 14 - 1.8700 A const. 1
d23 A 16 - 21 - 1.8700 A const. 1
d34 A 23 - 28 - 1.8700 A const. 1
4ONit % 31 - 33 3 0-50 % 10% 6
%Ni2 % 36 - 38 2 50-100 % 10% 6
% Ni 3 Yo 41 - 43 1 30-70 % 10% 5
Intensity 1 - 47 - &7 - - -
Intensity 2 - 61 - 71 - - -
Intensity 3 - 75 - 85 - - -
Intensity 4 - 89 - 99 - - -

This makes for 6 x 6 x 5 = 180 different structures, each of which has
160 points in each of its four IV curves. For the purposes of using the
network, the four IV curves are concatenated with each other, making one
big concatenated IV curve of 640 points for each of the 180 structures.

178

*/
*/
*/
r/
»/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
\
*/
*/
*/
-/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/



/* */
/+* LEEDNET format for data (ASCII text file): */
/* ’ */
/* Number of input nodes, Ni } 3-1inet/
/* Number of output nodes, Nt } headerx/
/= Number of structures in file, Ns 3 */
/* Structure #1 1st input (beam ! intensity at lowest energy) > */
/% Structure #1 2nd input (beam 1 intensity) > Ni */
/¥ L > pts */
/% Structure #1 Ni-th input (last beam intensity at highest energy) > */
/* Structure #1 1st output 1 */
/e 1 Nt */
/* Structure #1 last output 1 pts  */
VAT */
/% Structure #2 Ist input */
VA */
/% Structure #2 last output */
VAT */
/* Structure #Ns last output */
/% */
/* */

/* The file format consists of a 3-line header that defines the number of */
/* inputs, number of outputs, and number of structures in the file. This */

/* header is followed by Ni inputs and Nt output for the Ist structure, */
/* Ni inputs and Nt outputs for the second structure, etc., through */
/* Ni inputs and Nt outputs for the Ns-th structure. The total number of %/
/% lines in the file should be 3 + Ns*(Ni+Nt). */
/* */
/* To write your own function to format your data into the above LEEDNET */
/* format, open an input “"original" and output "formatted" file as shown */
/* here, include whatever logic is needed to format the file, and close x/
/% the files at the end. In this example, four “"temp" files are used to */
/* sort the data for the individual beams before concatenating them. */
/* */

/tt*tt#t“***k***tt***tt******lttttt**t!'tx*****xttx*k******ttx********t*****t/

AR KA AR KR AR KA A A AN KA KK F K KA KK A A A A A A FF KK xRk

/* #includes */
ok s o R A KR a2 e Kk 3K SR 3ok KK K K KR S o o EEE T TS ERE TS EEEET P2y
#include <stdio.h> /* standard i/o */
#include <stdlib.h> /* standard library */
#include <string.h> /* string functions */
#include "leednet.h” /* leednet-specific definitions =/
/* FTs **nw***/
/* external variables */

/******t!!ttt******‘t**********ttt**t***#iﬁ*******t***t*********tt********ttt*/

extern long beams;

extern long inputs;

extern long outputs;

extern long numpts;

extern long structures;

extern long sepnum;

extern long skip;

extern char env_value[ENVIRONMENT] [LINESIZE];

/*‘*****t*ttttt***t*************ttt***#t**t******tt***k*****tt**k*******t*t#t*/

/* format01() x/
/ HAA RN KRR AR K kK [

void format01(void)

{

/ - e /
/* local variable declarations */
/ /
long 1, j, k; /* loop counters */

double e, d12, d23, d34, pNil, pNi2, pNi3,
i1, i2, i3, i4;
char str[200];
FILE *infp, *outfp, *templ, *temp2,
*temp3, *tempd;

179



/ /
/% open all files */
/ /
if ((infp=fopen({env_value[ORIGINAL],"r"))==NULL)
printf (" Error opening original file \"%s\".\n"
env_value[ORIGINAL]);
return;
}
if ((outfp=fopen(env_value[FORMATTED],"w"))==NULL)
{
printf (" Error opening formatted file \"%s\".\n"
env_value [FORMATTED]) ;
return;
}
if ((tempi=fopen("templ.dat","w"))==NULL)
printf (" Error opening file TEMP1.DAT\n");
return;
}
if ((temp2=fopen(“temp2.dat","w"))==NULL)
{
printf (" Error opening file TEMP2.DAT\n")
return;
}
if ((temp3=fopen(“temp3.dat","w"))==NULL)
{
printf (" Error opening file TEMP3.DAT\n");
return;
}
if ((temp4=fopen("temp4.dat","w"))==NULL)
{
printf (" Error opening file TEMP4.DAT\n"};
return;
}
/¥ e /
/* start of main loop */
/ -- /
fprintf (outfp,"%d\n",inputs);
fprintf (outfp,"%d\n",outputs);
fprintf (outfp,"%d\n",structures);
for (k=0; k<structures; k++)
{
printf(" Structure %d\n", k)
/ /
/* write one set of intensities out to temp files */
e e e e /
for (j=0; j<=k; j++)
fgets (str,200,infp);
for (i=0; i<numpts; i++)
sscanf (str,"Alf %1f 41f %1f %1f %1f"
v %1f Yle Ale Yle Yle",
&e, &d12, &d23, &d34, &pNil,
¥pNi2, &pNi3, &il, &i2, &i3,
&id);
fprintf (templ, "%le\n", il);
fprintf (temp2, "%le\n", i2);
fprintf (temp3, "Yle\n", i3);
fprintf (temp4, "%le\n", i4)
for (j=0; j<structures; j++)
fgets (str, 200, infp);
¥
/ /

180



/
/

/
/*
/

/
/*
/

*

done writing to temp files, so close them

fclose(templ);
fclose(temp2);
fclose(temp3);
fclose(tempd);

* ¥

open temp files back up (this time for reading), and print out their

contents into iv.out

if ((templ=fopen("templ.dat","r"))==NULL)

printf (" Error opening file TEMP1.DAT\n");
return;

}
for (i=0; i<numpts; i++)}

fgets (str,200,templ);

sscanf (str,"Vle", &il);
fprintf (outfp, "%le\n", il);
}

if ((temp2=fopen{“temp2.dat","r"))==NULL)

printf (" Error opening file TEMP2.DAT\n");
return;

for (i=0; i<numpts; it+)

fgets (str,200,temp2);

sscanf (str,"%le", &i2);
fprintf (outfp, "%le\n", i2);
}

if ((temp3=fopen("temp3.dat","r"))==NULL)

printf (* Error opening file TEMP3.DAT\n");
return;

}

for (i=0; i<numpts; i++)
{
fgets (str,200,temp3);
sscanf (str,"}le", &i3);
fprintf (outfp, “%le\n”, 13);
}

if ((temp4=fopen("temp4.dat","r"))==NULL)

printf (" Error opening file TEMP4.DAT\n"};
return;

}

for (i=0; i<numpts; i++)
{
fgets (str,200,tempd);
sscanf (str,"%le", &i4);
fprintf (outfp, "Yle\n", i4};
}

print output parameters to iv.out

fprintf (outfp,”%lf\n%lf\n%1lf\n", pNil, pNi2, pNi3);

close temp files again

181



fclose(templ);
fclose(temp2);
fclose(temp3);
fclose(tempd);

/ /
/* open temp files back up, this time for writing */
/ /
if ((templ=fopen("templ.dat","w"})==NULL)
{
printf (* Error opening file TEMP1.DAT\n");
return;
}
if ((temp2=fopen(“temp2.dat","w"))==NULL)
{
printf (* Error opening file TEMP2.DAT\n"};
return;
¥
if ((temp3=fopen{“temp3.dat","w"))==NULL)
printf (" Error opening file TEMP3.DAT\n");
return;
}
if ((temp4=fopen{“temp4.dat","w"))==NULL)
printf (" Error opening file TEMP4.DAT\n");
return;
}
rewind (infp);
}
/ T /
/* close all files */
/e oo /

fclose (infp);

fclose (outfp);
fclose (templ);
fclose (temp2);
fclose (temp3);
fclose (temp4);

/*======== end of file FORMATO01.C =

182



Appendix D

Listing of File LEEDNET .H

/* File LEEDNET.H */
#define LINESIZE 95 /* size of input lines */
#define ENVIRONMENT 39 /* # of environment variables */
#define ORIGINAL 0 /*  original data file name */
#define FORMATTED 1 /% formatted data file name */
#define MISSING 2 /* missing 1 struct file name */
#define SINGLE 3 /% 1 structure file name */
#define PRUNED 4 /*  pruned data file name */
#define TRAINING 5 /*  training data file name */
#define ERRORDAT 6 /*  error vs epoch file name */
#define DUMPFILE 7 /*  dump file name */
#define HELPFILE 8 /* help file name */
#define PLOTFILE 9 /* plot data file name */
#define INPUTS 10 /*  number of input nodes */
#define HIDDEN 11 /*  number of hidden nodes */
#define OUTPUTS 12 /* number of ontput nodes */
#define FUNCTION 13 /* data conv function number */
#define EPQCHS 14 /* num of epochs to teach =/
#define DELPRT 15 /* num of epochs to prt message*/
#define MU 16 /* momentum rate for learning */
#define KAPPA 17 /* amt to incr learning rate */
#define PHI 18 /*  factor to mult learning rate*/
#define THETA 19 /*  ctrl time period for avg’ing*/
#define WEIGHTFILE 20 /% saved net weights file name */
#define SEED 21 /*  seed for rand num generator */
#define NUMPTS 22 /*  num of points in i(v) curve */
#define STRUCTURES 23 /*  num structures in data set */
#define SEPNUM 24 /*  structure num to extract */
#define SKIP 25 /%  interval to skip pruned datax/
#define STATUS 26 /*  training status on/off flag */
#define STATUSFILE 27 /* status filename */
#define ADAPTIVE 28 /* adaptive learning rate flag */
#define PAUSE 29 /* training pause (epochs) */
#define DEBUG 30 /*  debug mode on/off */
#define BEAMS 31 /* number of beams in input */
#define ERRORLIM 32 /* training error limit */
#define ANLINFILE 33 /* analysis input file */
#define ANLOUTFILE 34 /*  analysis output file */
#define BEAMOUTFILE 35 /*  rebeam output file */
#define DELANALYZE 36 /*  num of epochs to analyze */
#define RESUMEEPOCH 37 /*  resume epoch number */
#define SEEDMULT 38 /% random seed multiplier */

end of file LEEDNET.H = */

183



Appendix E

Listing of File LEEDNET . HLP

File LEEDNET.HLP

**¥xpeneral
alloc Allocate memory for the network
analyze Analyze a network from its training data
ask Ask a trained network to process input
debeam Separate data set into individual beams
dump Dump network weights
dw Display network weight
env Display help on environment variables
exit Quit LEEDNET
format Re-format data to LEEDNET format
help Help on LEEDNET commands
load Load network weights
mem Display memory usage report
merge Merge data files together
plot Generate I(V) plot data
prune Prune points from a data set
quit Quit LEEDNET
randomize Initialize random number generator from system time
rebeam Re-assemble data set from individual beams
resume Resume a training run
save Save network weights
scale Set/display network output scaling constants
separate  Separate data in a data set
set Set/display environment variables
status Show network training status
train Train a network
ver Display LEEDNET version number
***alloc
alloc Allocates memory for the network.

The memory allocated is based on the number of
input, hidden, and output nodes currently defined
(environment variables “inputs", "hidden", and
"outputs". The memory is dynamically allocated on
the heap.
*x*¥analyze
analyze Analyze a network from its training data.
“Analyze" reads the number of inputs, outputs,
and structures from the “training" file. It then
loads network weights from "weightfile". Finally,
it shows each structure in “anlinfile" to the
network and compares the network’s outputs to the
expected outputs in the training data. The statistics
on the final results are sent to the file defined by
the environment variable "anloutfile."
**xack
ask Asks a trained network to process input.
Shows the file defined by environment variable "single"”

184



to the network, runs the network, and displays its
outputs.

***debeam
debeam Separate dataset into individual beams.

The file defined by the environment variable "formatted”
contains the LEEDNET-format I(V) data, variable "beams"”
should be set to the number of separate beams in each
spectrum, and variable “inputs" should be set to the total
number of points in each spectrum. Each I(V) spectrum is
divided into “"beams" equal data sets; the output files are
named "beam.nnn”.

**xdump
dump Dump network weights.

*xxdu
dw

The current values of all network weights are dumped to the
file vhose name is given by the environment variable
"dumpfile".

Display a single network weight.
The command syntax is: dw vlw i j
where
v asks to display an input-to-hidden weight
w asks to display a hidden-to-output weight
i,j are the weight indices

*kRENV

Environment variables are set using the "set" command:
set <varname>=<value>

Typing "set" with no argument displays the current values

of all environment variables. The available environment

variables are:
adaptive Adaptive learning rate flag (l=on, O=off)
anlinfile Analysis input file (for "analyze" command)
anloutfile Analysis output file (for "analyze" command)
beamoutfile Beam output file (for “rebeam" command)
beams Number of beams in input (for “"debeam" and “rebeam")
debug Debug mode on/off flag
delanalyze Interval (epochs) to save network weights
delprt Number of epochs to print msg and save error report
dumpfile Network weight dump file name
epochs Number of epochs to train the network
errordat Error vs. epoch output file name
errorlim Training error limit
formatted Formatted data file name (LEEDNET format)
function Selects a formatting function for “format" command
helpfile Help file name
hidden Number of network hidden nodes
inputs Number of network input nodes
kappa Kappa parameter for adaptive learning
missing Missing 1 structure file name (for "separate" cmd)
mu Momentum parameter for learning rate
numpts Number of points in I(V) curve
original Original data file name (for "format" command)
outputs Number of network output nodes
pause Training pause (epachs)
phi Phi parameter for adaptive learning
plotfile Plot data output file name
pruned Pruned data file name ("prune" command)
resumeepoch Resume epoch (for "resume” command)
seed Seed for random number generator
seedmult Random seed multiplier
sepnum Number of structure to be isolated for "separate" omd
single 1-structure file name ("separate" and "ask" cmds)
skip Number of points to skip for "prune" command
status Training status on/off flag {(l=omn, O=off)

s
s

tatusfile Training status file name
tructures Number of structures in data set

theta Theta parameter to control averaging period
training Training data file name
weightfile File name under which to save or load network weights
Fkkexit
exit Quit LEEDNET.
**xformat
format Re-format data into LEEDNET format.

***hel
help

I(V) data is re-formatted from its original format into the
format used by LEEDNET. Several different formatting
functions may be available; they are selected using the
environment variable "function".
original -> formatted

P

Help on LEEDNET commands.
Type "help” for a list of available commands.

185



Type "help cmd" for detailed help cn command “cmd".

Type "help env" to display help on environment variables.

**xLoad
load Load network weights.
Network weights are loaded from the file defined by
environment variable "weightfile". The number of input

nodes, output nodes, and structures (variables “inputs”,

“outputs”, and "structures") will also be loaded.
**kmem
mem Display memory usage report.
Type "mem" to display the current network memory usage.
Type "mem <inputs> <hidden> <outputs>" to display the
memory that would be required for a network of the
specified number of input, hidden, and output nodes.
*kkmerge
merge Merge several data files together.

The "merge" command will prompt for the name to be given

to the output file. It will then ask for the names of

the input files, each of which should contain one structure
(created, for example, by the "separate" command). FEnter a

carriage return by itself after the last file name is

entered. When done, manually update line 3 of the output

file (total number of structures).
*xxplot
plot Generate I(V) plot data.

The file given by the enviromment variable "formatted" is
broken into spectra for individual structures, and I vs. E
data is saved into files named "struct.nnn". The data in
each file is in ASCII format and is suitable for plotting

with a spreadsheet program.
*k xprune
prune Prune points from a data set.
The data file specified by the environment variable

"formatted" is "pruned" by keeping only every n-th point,

where "n" is given by the environment variable "skip".
The result is saved in the file specified by the
environment variable "prune".

formatted -> pruned

*xquit

quit Quit LEEDNET.
*x*>randomize

randomize Tnitialize random number generator from system time.
*¥*xrebeam

rebeam Combine data sets for individual structures into one file.

The user is prompted for the names of the files containing
the individual beam data, and the beam data is combined into a

single file whose name is specified by the "beamoutfile"
environment variable.
**¥resume
resume Resume a training run.
To resume a training run, type:
set weightfile=<weight filename>
set resumeepoch=<epoch number>

resume
*k*save
save Save network weights.
Network weights are saved to the file defined by
environment variable “weightfile". The number of input

nodes, output nodes, and structures (variables "inputs",
“"outputs", and "structures") will also be saved.
**x*scale
scale Display or set network output scaling constants.
Type "scale" with no arguments to display the current
values of all scaling constants.
Type "scale <n> <tmin> <tmax> [<smin> <smax>] [n]"
to calculate and save scaling constants for output <n>
for "true" values ranging between <tmin> and <tmax>.
The optional minimum and maximum scaled values <smin>
and <smax> default to 0.1 and 0.9, respectively. If
an "n" is specified, the scaling is calculated but not
stored.
Type "scale <n> <value>" to perform true->scaled and
scaled->true conversions of <value> for output <mn>.
*kxseparate
separate  Separate data in a data set.

A single structure is isolated from the data set specified
by the environment variable "formatted". The enviromment

variable "sepnum" should be set to the number (starting
from 0) of the structure to be isolated. The "separate"
command will then place the spectrum for that structure

186



into the file whose name is given by the "single" variable,
and the remaining spectra will be placed into the file
vhose name is given by the "missing" variable.
formatted -> missing, single
**¥%xget
set Set/display environment variables.
Type "set" with no arguments to display the current values
of all enviromment variables.
Type “set <varname>=<value>" to set an enviromment variable
to a new value.
*¥*status
status Show network training status.
The network training status is peroidically stored in the
file defined by the environment variable "statusfile",
provided the "status" variable is set to 1. The “status"
command displays the contents of this file
skkgrain
train Train the network.
The file specified by the "training" environment variable
is used to train the network for "epochs" training epochs.
Type "train [cont]™ to continue training that has been
stopped.
***¥yver
ver Display LEEDNET version number.
Nk

187



Bibliography

[11 M. Prutton. Introduction to Surface Physics. Oxford University Press, 1994,
[2] A. Zangwill. Physics at Surfaces. Cambridge University Press, 1988.

[3] M.W. Finnis and V. Heine. J. Phys., F4:L37, (1974).

[4] C.J. Davisson and L.H. Germer. Phys. Rev., 30:705, (1927).

[5] B.D. Cullity. Elements of X-Ray Diffraction. Addison-Wesley, 1978.

[6] M.A. Van Hove, W.H. Weinberg, and C.-M. Chan. Low-Energy Electron Diffraction.

Springer-Verlag, 1986.
[7] C. Kittel. Introduction to Solid State Physics. Wiley, 7th edition, 1996.
[8] G. Arfken. Mathematical Methods for Physicists. Academic, 3rd edition, 1985,
[9] J.E. Houston and R.L. Park. Surf. Sci., 21:209, (1970).
[10] R.L. Park, J.E. Houston, and D.G. Schreiner. Rev. Sci. Instrum., 42:60, (1971).

[11] M.A. Van Hove and S.Y. Tong. Surface Crystallography by LEED. Springer-Verlag,
1979.

188



189

[12] P.M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill, 1953.

[13] J.L. Beeby. J. Phys. C, 1:82, (1968).

[14] J.B. Pendry. J. Phys. C, 13:937, (1980).

[15] S. Andersson, B. Kasemo, J.B. Pendry and M.A. Van Hove. Phys. Rev. Lett.. 31:595,

(1973).

[16] J.E. Demuth, D.W. Jepsen, and P.M. Marcus. Phys. Rev. Lett., 31:540, (1973).

[17] S.Y. Tong and K.H. Lau. Phys. Rev. B, 25:7382, (1982).

[18] T.H. Upton and W.A. Goddard. Phys. Rev. Lett., 46:1635, (1981).

[19] E.W. Swokowski. Calculus with Analytic Geometry. Prindle, Weber & Schmidt,,

2nd edition, 1979.

[20] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes:

The Art of Scientific Computing. Cambridge, 1986.

[21] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-KENT Publishing, 4th

edition, 1989,

[22] P.J. Rous. Surf. Sci., 296:358, (1993).

[23] E. Aarts and J. Korst. Simulated Annealing and Boltzman Machines: A Stochastic

Approach to Combinatorial Optimization and Neural Computing. Wiley, 1989.

[24] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.



190

[25] PJ. Russell. Genetics. Harper-Collins, 4th edition, 1996.
[26] R. Doll and M.A. Van Hove. Surf. Sci., 355:L393, (1996).

[27] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. Molecular

Biology of the Cell. Garland Publishing, 3rd edition, 1994.

[28] D. Purves, G.J. Augustine, D. Fitzpatrick, L.C. Katz, A-S. LaMantia, and J.O. Mc-

Namara, editors. Neuroscience. Sinauver Associates, 1997.
[29] L. Fausett. Fundamentals of Neural Networks. Prentice-Hall, 1994.
[30] F. Harary. Graph Theory. Addison-Wesley, 1969.
[317 K. Swingler. Applying Neural Networks: A Practical Guide. Academic Press, 1996.
[32] M. Smith. Neural Networks for Statistical Modeling. Van Nostrand Reinhold, 1993.
[33] M.H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, 1995.
[34] G.N. Derry, C.B. McVey, and PJ. Rous. Surf. Sci., 326:59, (1995).
[35] S. Crampin and P.J. Rous. Surf. Sci. Lett., 244:1L137, (1991).

[36] PJ.M. Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applications.

Reidel, (1987).



Index

action potential, 44
activation function, 46, 50
adaptive learning rates, 59
adenosine 5’-triphosphate, 42
annealing, 17

simulated, 35
ATP, see adenosine 5’°-triphosphate

axon, 42

backpropagation, 48
batch learning, 59, 61, 120
bias weight, 50

bipartite graph, 48

chromosomes, 36
crossover, 37
cytoplasm, 42

cytosol, 42

Davisson-Germer experiment, 6

Debye-Waller factor, 12

191

dendrites, 44
dynamical calculations, 19

dynamical calculations,, 11

clectron gun, 12

elitism, 39

endoplasmic reticulum, 42
environment variables, 130

exhaustive global search, 32

feedforward, 52

fitness function, 36

genetic algorithms, 36
Golgi apparatus, 42
graph

bipartite, 48

hidden nodes, 48

I-p curves, 9

I1-6 curves, 9



I-V curves, 9
inner potential, 20, 21
energy shift, 95
input nodes, 46
instrument response function, 16, 838
intensity, 94
interatomic scattering, 20
ion channels
gated, 44
transmitter-gated, 44

voltage-gated, 44
kinematic calculation, 19

layer doubling, 29

learning rate, 58

LEED, see low-energy electron diffrac-
tion

LEEDNET, 64

low-energy electron diffraction, 2, 6-17

mating pool, 37
medial nodes, 48
mitochondria, 42
momentum, 59

muffin-tin

192

constant, 21
potential, 20
radius, 21
multiple scattering, 11, 19

mutation, 38

neuron, 41
neurotransmitter, 44
nodes, 46

input, 46

Pendry
R-factor, 31, 36, 39, 103
RR-factor, 32
Y-function, 31, 103, 109, 112, 122
phase shift, 24
phonon, 22
plasma membrane, 42

plasmon, 22

R-factor, see reliability factor

registry, 33

relaxation, 3

reliability factor, 30, 32, 36, 39, 103
renormalized forward scattering, 29, 88

reproduction, 37



REFS, see renormalized forward scattering

RHEED, 6

sample preparation, 17
scaling, 50, 113
scattering
interatomic, 26
intra-atomic, 20, 24
selvedge, 3
sigmoid function, 50
simulated annealing, 35
sputtering, 17
steepest descent, 33
suppressor grid, 14, 22
surface physics, |
synapse, 44
synaptic cleft, 45

synaptic vesicles, 44

terminal branches, 42
thermal effects, 11
training, 47

transfer function, 16

UHYV, see ultra-high vacuum

ultra-high vacuum, 2, 12

unsupervised learning, 47

weight, 46, 49

X rays, 6, 9, 19

Y-function, 31, 103, 109, 112, 122



	Approval Sheet
	Abstract
	Preface
	Contents
	List of Tables
	List of Figures
	1. Surface Physics and Low-Energy Electron Diffraction
	2. LEED Dynamical Calculations and Structure Analysis
	3. Artificial Neural Networks
	4. Development of Artificial Neural Networks for LEED Surface Structure Determination
	5. Application of Artificial Neural Networks to Low-Energy Electron Diffraction
	6. LEED Surface Structure Determination Using Artificial Neural Networks
	Appendix A. LEEDNET User's Guide
	Appendix B. Listing of Program LEEDNET.C
	Appendix C. Listing of Program FORMAT01.C
	Appendix D. Listing of File LEEDNET.H
	Appendix E. Listing of File LEEDNET.HLP
	Bibliography
	Index



